
RIGOR: Reusing Inference in
Graph Cuts for generating
Object Regions

Fuxin Li Jim Rehg

July 2014

Ahmad
Humayun

Computer Vision and Pattern Recognition 2014

http://cpl.cc.gatech.edu/projects/RIGOR

http://cpl.cc.gatech.edu/projects/RIGOR

Problem Statement - Finding Figure-Ground Segments

Input Image, I
Hierarchy of Object Segments

[1] All input images from PASCAL VOC – Everingham et al., “The PASCAL VOC Challenge,” IJCV 2010
[2] Arbeláez et al., “Contour Detection and Hierarchical Image Segmentation,” PAMI 2011

Segments from
cyclist in middle

2

Motivation

Current methods too slow …

Method Run Time (s)

CPMC [1] 34.01

Object Proposals [2] 126.46

Shape Sharing [3] 410.31

[1] Carreira and Sminchisescu, “CPMC: Automatic Object Segmentations Using Constrained Parametric Min-Cuts,” PAMI 2012
[2] Endres and Hoiem, “Category-Independent Object Proposals with Diverse Ranking,” PAMI 2013
[3] Kim and Grauman, “Shape Sharing for Object Segmentation,” ECCV 2012

How to find objects?
If there is an object at a small selected location
(seed) – what is the best segment

3

Motivation

[1] Carreira and Sminchisescu, “CPMC: Automatic Object Segmentations Using Constrained Parametric Min-Cuts,” PAMI 2012

CPMC: More segments Slower speed Higher recall

Computation Time Accuracy (Overlap)

4

Goal

Segments of similar quality in an order of magnitude less time …
PASCAL VOC

Ground-TruthInput Image, I RIGOR best
object proposals

5

Method Overview

Input Image, I
Probabilistic
Boundaries

[1,2,3]
(Superpixels) Seeds from

Superpixels

[1] Leordeanu, et al., “Efficient Closed-Form Solution to Generalized Boundary Detection,” ECCV 2012
[2] Lim, Zitnick, and Dollar, “A Learned Mid-level Representation for Contour and Object Detection,” CVPR 2013
[3] Dollar and Zitnick, “Structured Forests for Fast Edge Detection,” ICCV 2013

6

Method Overview

Input Image, I

Probabilistic
Boundaries (Superpixels)

Seeds from
Superpixels

Parametric Min-Cut
produces Segments

Filter
Segments

7

Computation Time

0 2 4 6 8 10 12

GB [1]

Pairwise Potentials

Unary Potentials

Parametric Min-cut

Segment Filteration

Overheads

Computation Time (s)

Total Time: 24.2s

When using Pixel graphs (CPMC)

[1] Leordeanu, et al., “Efficient Closed-Form Solution to Generalized Boundary Detection,” ECCV 2012

8

Computation Time

0 2 4 6 8 10 12

Structured Edges [3]

Pairwise Potentials

Unary Potentials

Parametric Min-cut

Segment Filteration

Overheads

Computation Time (s)

Total Time: 18.2s

… use Structured Edges [3]

[3] Dollar and Zitnick, “Structured Forests for Fast Edge Detection,” ICCV 2013

9

0 2 4 6 8 10 12

Structured Edges [3]

Superpixels

Pairwise Potentials

Unary Potentials

Parametric Min-cut

Segment Filteration

Overheads

Computation Time (s)

Total Time: 3.3s

Computation Time

… woah … from Pixels to Superpixels based Graphs

[3] Dollar and Zitnick, “Structured Forests for Fast Edge Detection,” ICCV 2013

0 0.5 1 1.5 2

Structured Edges [3]

Superpixels

Pairwise Potentials

Unary Potentials

Parametric Min-cut

Segment Filteration

Overheads

Computation Time (s)

Total Time: 3.3s

10

0 0.5 1 1.5 2

Structured Edges [3]

Superpixels

Pairwise Potentials

Unary Potentials

Parametric Min-cut

Segment Filteration

Overheads

Computation Time (s)

Total Time: 3.3s

Computation Time

How can we reduce the parametric Min-cut computation time?

[3] Dollar and Zitnick, “Structured Forests for Fast Edge Detection,” ICCV 2013

11

Our Contributions

1. Method to reuse information for MAP inference in different.
graphs with same pairwise costs, but different unary seeds.

2. Allow sharing information across graph-cut problems before the
full cut is computed (allows parallelization).

3. An object segmentation method which is an order of magnitude
faster, without loss in accuracy.

12

Related Work

𝐹𝐹𝑡𝑡

𝐹𝐹𝑡𝑡+1

User Scribbles Flows Cut

[1] Boykov and Jolly, “Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images,” ICCV 2001
[2] Kohli and Torr, “Dynamic Graph Cuts for Efficient Inference in Markov Random Fields,” PAMI 2007

Kohli and Torr [2]
Reusing Flows in Dynamic Graph-Cuts

Boykov and Jolly [1]
Reusing Flows for Interactive Segmentation

Input Segmentation

13

How to use Parametric Min-Cut?

Input Image, I

𝐸𝐸𝜆𝜆
𝑖𝑖 𝑿𝑿 = �

𝑢𝑢∈𝒱𝒱

𝐷𝐷𝜆𝜆
𝑖𝑖(𝑥𝑥𝑢𝑢) + �

𝑢𝑢,𝑣𝑣 ∈ℰ

𝑉𝑉𝑢𝑢𝑢𝑢(𝑥𝑥𝑢𝑢, 𝑥𝑥𝑣𝑣)

𝐷𝐷𝜆𝜆
𝑖𝑖 𝑥𝑥𝑢𝑢 = 𝑓𝑓 𝑥𝑥𝑢𝑢 + 𝜆𝜆

𝐷𝐷𝜆𝜆
𝑖𝑖 𝑥𝑥𝑢𝑢 = ∞ If 𝑢𝑢 ∈ 𝑆𝑆𝑖𝑖 and assigned to background

Parametric unaries otherwise

Parametric Unaries

Pairwise Superpixel PotentialsLabeling of
all Superpixels

14

How to use Parametric Min-Cut?

Input Image
with seeds

increasing 𝜆𝜆
15

Preliminary: Boykov-Kolmogorov (BK)

[1] Boykov and Kolmogorov, “An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision,” PAMI 2004

S

T

Grow Trees

T sink tree edge

S sink tree edge

Augmenting path from S to T

16

Preliminary: Boykov-Kolmogorov (BK)

[1] Boykov and Kolmogorov, “An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision,” PAMI 2004

Grow Trees Augment Flow

S

T
T sink tree edge

S sink tree edge

Augmenting path from S to T

Saturated edge on augmenting path

Orphan tree

S

T

17

Preliminary: Boykov-Kolmogorov (BK)

[1] Boykov and Kolmogorov, “An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision,” PAMI 2004

Grow Trees Augment Flow

S

T

S

T

Adoption

T sink tree edge

S sink tree edge

Augmenting path from S to T

Saturated edge on augmenting path

Orphan tree

S

T

18

Problem Statement

𝐸𝐸𝜆𝜆
𝑖𝑖 𝑿𝑿 = �

𝑢𝑢∈𝒱𝒱

𝐷𝐷𝜆𝜆
𝑖𝑖(𝑥𝑥𝑢𝑢) + �

𝑢𝑢,𝑣𝑣 ∈ℰ

𝑉𝑉𝑢𝑢𝑢𝑢(𝑥𝑥𝑢𝑢, 𝑥𝑥𝑣𝑣)𝑆𝑆𝑖𝑖

𝑆𝑆𝑗𝑗 𝐸𝐸𝜆𝜆
𝑗𝑗 𝑿𝑿 = �

𝑢𝑢∈𝒱𝒱

𝐷𝐷𝜆𝜆
𝑗𝑗(𝑥𝑥𝑢𝑢) + �

𝑢𝑢,𝑣𝑣 ∈ℰ

𝑉𝑉𝑢𝑢𝑢𝑢(𝑥𝑥𝑢𝑢, 𝑥𝑥𝑣𝑣)

Given 𝑁𝑁 energy functions for parametric min-cut, find what information can be shared
for their minimization (MAP). 𝑉𝑉𝑢𝑢𝑢𝑢 remains same across the functions.

Seed: 𝐷𝐷𝜆𝜆
𝑖𝑖 𝑥𝑥𝑢𝑢 = ∞ iff 𝑥𝑥𝑢𝑢 ∈ 𝑆𝑆𝑖𝑖 and 𝑥𝑥𝑢𝑢 = 0. Condition: 𝑆𝑆𝑖𝑖 ∩ 𝑆𝑆𝑗𝑗 = ∅, for all 𝑖𝑖, 𝑗𝑗

Share information

19

Key Insight

Collect all parametric min-cut segments.
- Count how many times each superpixel edgelet was in the cut

tim
es edge used to separate fg/bg

Lots of white
edges, which are
never used in a cut

20

Key Insight

~54% boundaries never in the cut
- Share information across Graph-cuts – communicate that some
edglets never in cut

21

What can we Reuse?

BK spends time creating trees – reusing them is useful

Cut for seed 𝑆𝑆2Cut for seed 𝑆𝑆1

1

22

Idea - generate trees that are useful across all seeds

1st step: combine all seeds into one precomputation graph

∪ =

Seed 𝑆𝑆1 graph Seed 𝑆𝑆2 graph Precomputation graph

23

∪

Idea - generate trees that are useful across all seeds

=

Seed 𝑆𝑆1 graph Seed 𝑆𝑆2 graph Precomputation graph

1

S

∞

2

T

4

3

6

20 10

Seed 𝑆𝑆1 graph

1

S

∞

2

4

3

T

30

20 10

Seed 𝑆𝑆2 graph

1

S

∞

2

4

3

T

20 10

S

∞

Precomputation graph

=

Example

∪

1st step: combine all seeds into one precomputation graph

24

Reparameterization [1,2]

Changes flow value but not the cut! As long as 𝑐𝑐𝑠𝑠 − 𝑐𝑐𝑡𝑡 remains same

[1] Boykov and Jolly, “Interactive Graph Cuts for Optimal Boundary and Region Segmentation of Objects in N-D Images,” ICCV 2001
[2] Kohli and Torr, “Dynamic Graph Cuts for Efficient Inference in Markov Random Fields,” PAMI 2007

n

S

𝑐𝑐𝑠𝑠 = 5

T

𝑐𝑐𝑡𝑡 = 4

≡ n

S

𝑐𝑐𝑠𝑠∗ = 1

n

S

𝑐𝑐𝑠𝑠 = 9

change to?

n

S

𝑐𝑐𝑠𝑠′ = 3

𝒢𝒢2𝒢𝒢1Key Idea

𝑓𝑓𝑠𝑠 = 4

n

S

𝑐𝑐𝑠𝑠∗ = 9 + 1

T

𝑐𝑐𝑡𝑡∗ = +1

𝒢𝒢1∗

𝑓𝑓𝑠𝑠 = 4

Eg.

n

S

𝑐𝑐𝑠𝑠′∗ = 4

T

𝑐𝑐𝑡𝑡′∗ = 1

𝒢𝒢2∗

𝑓𝑓𝑠𝑠′∗ = 4

1. Add capacity 2. Reparameterize

25

Reusing computation by Precomputation Graph

2nd step: Run Boykov-Kolmogorov on precomputation graph

Precomputation graph

Solved Precomputation graph

≡
Run B.K. for
growing trees

Notice, we now have two 𝑆𝑆 trees
and one 𝑇𝑇 tree

26

Reusing computation by Precomputation Graph

3rd step: Convert Precomputation Graph to compute max-flow for each seed

Solved Precomputation graph Reparameterized to
use for seed 𝑆𝑆1

Maxflow for seed 𝑆𝑆1

Note: we needed to
convert tree 𝑆𝑆2 to 𝑇𝑇

27

Reusing computation by Precomputation Graph

3rd step: Repeat for all seeds

Solved Precomputation graph Reparameterized to
use for seed 𝑆𝑆2

Maxflow for seed 𝑆𝑆2

Tree 𝑆𝑆1 converted to 𝑇𝑇

Note: we get the same cuts, because we are just reparameterizing

28

Why is the Precomputation Graph useful?

BK spends time creating trees – reusing them is useful
Cut for seed 𝑆𝑆2Cut for seed 𝑆𝑆1

1

Completely reused from
Precomputation Graph

Solved Precomputation graph

29

Speed-up with Precomputation Graph
Parametric Min Cut time savings

Compared to Boykov Kolmogorov [1] Compared to Kohli & Torr [2]

[1] Boykov and Kolmogorov, “An Experimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimization in Vision,” PAMI 2004
[2] Kohli and Torr, “Dynamic Graph Cuts for Efficient Inference in Markov Random Fields,” PAMI 2007

30

Faster Pipeline
Pipeline timing comparison to Object Proposals [1]

[1] Endres and Hoiem, “Category-Independent Object Proposals with Diverse Ranking,” PAMI 2013

1

31

Quantitative Comparison

Method Mean Best
Overlap

Mean Best
Covering

Run Time
(s)

of
Segments

CPMC 70.67 82.24 34.01 624.1

Object Proposals 71.48 80.98 126.46 1544.1

Shape Sharing 67.82 82.71 410.31 1115.4

R
IG

O
R

GB, 25 seeds 68.04 79.83 4.62 808.7

StructEdges, 25 seeds 68.85 79.89 2.16 741.9

GB, 64 seeds 72.83 82.55 6.99 1490.3

StructEdges, 64 seeds 73.64 82.84 4.71 1462.8

GB, 100 seeds 74.22 83.25 9.26 1781.9

StructEdges, 100 seeds 75.19 83.52 6.84 1828.7

32

Future Directions

1. Learning unaries which are faster to compute, and accurate.

2. Parametric min-cut for both unaries and pairwise energies. [1]

3. Multiple precomputation graphs, each only dealing with graph
with similar unary costs.

4. GPU implementation.

[1] Lim, Jung, and Kohli, “Efficient Energy Minimization for Enforcing Statistics,” PAMI 2004

33

Summary

1. Presented a method to precompute some information for
different graph-cuts.

2. Our method can find re-use parts before computing full cuts.

3. A practical object segmenter, running under 2 secs!

4. CODE: http://cpl.cc.gatech.edu/projects/RIGOR

34

http://cpl.cc.gatech.edu/projects/RIGOR

	RIGOR: Reusing Inference in Graph Cuts for generating Object Regions
	Problem Statement - Finding Figure-Ground Segments
	Motivation
	Motivation
	Goal
	Method Overview
	Method Overview
	Computation Time
	Computation Time
	Computation Time
	Computation Time
	Our Contributions
	Related Work
	How to use Parametric Min-Cut?
	How to use Parametric Min-Cut?
	Preliminary: Boykov-Kolmogorov (BK)
	Preliminary: Boykov-Kolmogorov (BK)
	Preliminary: Boykov-Kolmogorov (BK)
	Problem Statement
	Key Insight
	Key Insight
	What can we Reuse?
	Idea - generate trees that are useful across all seeds
	Idea - generate trees that are useful across all seeds
	Reparameterization [1,2]
	Reusing computation by Precomputation Graph
	Reusing computation by Precomputation Graph
	Reusing computation by Precomputation Graph
	Why is the Precomputation Graph useful?
	Speed-up with Precomputation Graph
	Faster Pipeline
	Quantitative Comparison
	Future Directions
	Summary

