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What are superpixels?

• grouping pixels based on 
similarity (color)

• speeds up segmentation
• objects are made up of a 

small number of superpixels



Existing superpixel methods

gradual addition of cuts

• high accuracy
• very slow (contradictory)
• e.g. Entropy Rate Superpixels (Liu et al.)



Existing superpixel methods

growing from centers

• faster
• reduced accuracy (local minima + stray labels)
• still not fast enough
• e.g. SLIC Superpixels (Achanta et al.)



new approach: SEEDS Superpixels

• initialize with rectangular boundaries
• gradually refine boundaries
• SEEDS: Superpixels Extracted via Energy-driven 

Sampling - ECCV 2012
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Advantages of SEEDS

• faster than growing centers
• only needs to evaluate at the boundaries
• highly efficient evaluation using color histograms (1 memory lookup)
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Advantages of SEEDS

• faster than growing centers
• only needs to evaluate at the boundaries
• highly efficient evaluation using color histograms

• accuracy matches or exceeds state-of-the-art
• avoids local minima
• optimization only evaluates valid partitionings 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Advantages of SEEDS
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Advantages of SEEDS

• faster than state-of-the-art 

• accuracy matches or exceeds state-of-the-art 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Advantages of SEEDS

• faster than state-of-the-art 

• accuracy matches or exceeds state-of-the-art 

• control over run-time
• whenever the algorithm is stopped, a valid partitioning is available
• state-of-the-art accuracy at 30 Hz (single core) 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Advantages of SEEDS

• faster than state-of-the-art 

• accuracy matches or exceeds state-of-the-art 

• control over run-time
• whenever the algorithm is stopped, a valid partitioning is available
• state-of-the-art accuracy at 30 Hz (single core) 

• control over superpixel shape
• one or more priors can be applied during boundary updating
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SEEDS: Superpixels Extracted via Energy-Driven Sampling 11

(a) SEEDS without boundary prior term

(b) SEEDS with 3⇥ 3 smoothing prior

(b) SEEDS with compactness prior

(b) SEEDS with edge prior (snap to edges)

(b) SEEDS with combined prior (3⇥ 3 smoothing + compactness + snap to edges)

Fig. 9 Experiment illustrating how SEEDS can produce di↵erent superpixel shapes, using the boundary prior term G(s).

which are only removed at the end of all iterations and
might a↵ect the performance during the iterations.

6.4 Boundary Term

In Section 8, we instroduced G(s) as an optional bound-
ary term. This prior term allows us to influence the
shape of the superpixels produced by the SEEDS algo-
rithm. In this section we evaluate how G(s) can influ-

ence the shape of the superpixels, and how this impacts
the performance. To this end, we compare four di↵er-
ent prior terms. The first one is the 3 ⇥ 3 smoothing
term introduced in Section 8. This is a prior which en-
forces local smoothing in a 3 ⇥ 3 area around the su-
perpixel boundary. Second, we try a prior term based
on compactness, which aims to minimize the distance
between the pixels on the superpixel boundary and the
center of gravity of the superpixel. This is similar to



Advantages of SEEDS

• faster
• more accurate
• control over run-time
• control over shape
• temporal
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sults but at much higher speeds than available methods.

2. Related Work
In this section, we review previous work related to su-

perpixels and objectness in videos, the two tasks tackled in
this paper.

Video Superpixels. Most methods are approaches for still
images that have been extended to video. They either
progressively add cuts or grow superpixels from centers.
Adding cuts are the graph-based method [5] and its hier-
archical extensions [8, 17], segmentation by weighted ag-
gregation (SWA) [12], and normalized cuts with Nystrom
optimization [7]. Methods that grow centers are based on
mean shift [10, 9]. Our method also starts from a still-
oriented method, i.e. the recently introduced SEEDS ap-
proach [15]. Thus, our approach can be seen to add a third
strand to video superpixel extraction, namely one that that
moves the boundaries in an initial superpixel partition.

Recently, Xu et al. [16, 17] proposed a benchmark to
evaluate video superpixels and a framework for streaming
video segmentation using the graph-based superpixel ap-
proach of [5]. They achieved state-of-the-art results, but
only at 4 seconds/frame, i.e. 2 orders of magnitude from
real-time.

Temporal Window Objectness. The objectness measure
was introduced by Alexe et al. [1] for still images, where-
after [11] and [6] introduced new cues to boost perfor-
mance. To the best of our knowledge, objectness throughout
video shots has not been introduced before. It should not
be confused with the recently introduced dynamic object-
ness [13], which extracts objectness within a frame by in-
cluding instantaneous motion. In contrast, we deliver tubes
of bounding boxes throughout extended time intervals.

3. Video SEEDS
In this section, we first review the SEEDS algorithm [15]

for the extraction of superpixels in stills. Subsequently, we
discuss the extension of this concept for videos, the corre-
sponding energy function, and how to optimize it.

3.1. SEEDS for stills
Let s represent the superpixel partition of an image, such

that s : {1, . . . , N} ! {1, . . . , K}, in which N represents
the number of pixels in the image, and K the number of
superpixels. Superpixels are constrained to be contiguous
blobs, which is indicated by s 2 S , where S is the set of
valid superpixel partitions. The SEEDS approach [15] for
extracting superpixels in stills serves as starting point for
our video extension. Yet, we propose important refinements
on which the algorithm’s efficiency critically depends.

frame 0 frame 1 frame 2

initialization

pixel-updates

 
frame

block-updates
propagation

Figure 2. Overview of the Video SEEDS algorithm: The super-
pixel labels are propagated at an intermediary step of block-level
updates. The result is fine-tuned for each frame individually.

SEEDS extracts superpixels by maximizing an objective
function, thus enforcing the color histograms of superpixels
to be each concentrated in a single bin. The hill climbing
optimization starts from a grid of square superpixels, which
it iteratively refines by swapping blocks of pixels at their
boundaries. We chose SEEDS as they are extracted in real-
time on a single CPU.

3.2. SEEDS for videos
Our video approach propagates superpixels over multi-

ple frames to build 3D spatio-temporal constructs. As time
goes on, new video superpixels can appear and others may
terminate. In the literature, this is controlled by constraining
the number of superpixel tubes in the sequence. For online
applications this is not possible however, since the upcom-
ing length and content of the sequence are unknown. Thus,
we use alternative constraints defined through 2 parameters:

• Superpixels per frame: number of superpixels in which
each single frame is partitioned.

• Superpixel rate: the rate of creating/terminating super-
pixels over time.

In order to fulfill both constraints, the termination of a su-
perpixel implies the creation of a new one in the same
frame. In the experiments, we discuss how we select these
parameters.

Let S be the set of valid partitions of a video. These
are the partitions for which the superpixels are contiguous
blobs in all frames and that exhibit the correct superpixel-
per-frame and superpixel-rate behavior. Let At

k denote the

Video SEEDS
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layer 1 (pixels) layer 2 (blocks) layer 3 (blocks) layer 4 (superpixels)

Figure 3. Hierarchy of blocks of pixels of 4 layers.

set of pixels that belong to superpixel k, at frame t. To
indicate all pixels of the video superpixel up to frame t, we
use At:0

k .
Similarly to [15], the energy function encourages color

homogeneity within the 3D superpixels. We use a color
histogram of each superpixel to evaluate this. The color
histogram of At:0

k is written as cAt:0
k

. Let Hj be a subset of
the color space which determines the colors in a bin of the
histogram. Then the energy function is

H(s) =
X

k

X

{Hj}
(cAt:0

k
(j))2, (1)

which is maximal when the histograms have only one non-
zero bin for each video superpixel.

3.3. Online Optimization via Hill Climbing
The optimization algorithm is designed to maximize the

energy function in an online fashion (i.e. only using past
frames and at video rate). It computes the partition of the
current frame, starting from an approximation of the last
partition. Once the partition of the current frame is deliv-
ered, it remains fixed. We introduce a hill climbing algo-
rithm that runs in real-time. It maximizes the energy by
exchanging pixels between superpixels at their boundaries.
This section describes the optimization in more detail. See
Fig. 2 for an overview of the algorithm.

Hierarchy of blocks of pixels. Both the pixel exchange
between superpixels and their temporal propagation are reg-
ulated through blocks of pixels. The SEEDS algorithm [15]
started by dividing a still image into a regular grid of blocks.
An important difference with our algorithm is that we con-
sider a hierarchy of blocks at different sizes. Starting from
pixels as the most detailed scale, 2⇥ 2 or 3⇥ 3 pixel blocks
are formed (how that choice is made is to be clarified soon)
for the second layer. Further layers each time combine 2⇥2
blocks of the previous one. The block size at the second
layer (2 ⇥ 2 or 3 ⇥ 3) and the number of layers are cho-
sen such that the image subdivision at the highest layer ap-
proximately yields the prescribed number of superpixels per
frame. In Fig. 3 we illustrate an example of the hierarchy of
4 layers of block sizes.

Pixel and block-level updates. An initial partition of the
current frame is provided by the previous frame. This prop-
agation process will be described shortly. In case of the first

initialization layer 3 (blocks) layer 2 (blocks) layer 1 (pixels)

initialization layer 2 (blocks) layer 1 (pixels)

t =
 0

t =
 1

Figure 4. Efficient updating at different block sizes.

frame, the initial partition corresponds to the highest block
layer as just described, i.e. a regular grid. The hill climb-
ing optimization starts from the initialization to then itera-
tively propose local changes in the partition. Multiple pixel
block exchanges between superpixels are considered, one
after the other. If such an exchange increases the objective
function, it is accepted and the partition is updated; else, the
exchange is discarded. The exchanged pixel blocks are ad-
jacent to the superpixel boundaries. The algorithm starts by
exchanging bigger blocks, and then it descends in the block
hierarchy until it reaches the pixel level. Thus, in the first
iterations larger blocks are exchanged to quickly arrive at a
coarse partition that captures the global structure. Later, the
partition is refined through smaller blocks and pixels that
capture more details. This process is shown in Fig. 4.

Let Bt
n be a block of pixels of the current frame that be-

longs to the superpixel n, i.e. Bt
n ⇢ At

n ⇢ At:0
n . To evaluate

whether exchanging the block Bt
n from superpixel n to m

increases the objective function, we can use one histogram
intersection computation, rather than evaluating the com-
plete energy function. This is

int(cBt
n
, cAt:0

m
) � int(cBt

n
, cAt:0

n \Bt
n
), (2)

in which int(·, ·) denotes the intersection between two his-
tograms, and \ the exclusion of a set. Thus, if the inter-
section of Bt

n to the video superpixel At:0
m is higher than

the intersection to the superpixel it currently belongs to, the
exchange is accepted, otherwise it is discarded. The speed
of the hill climbing optimization stems from Eq. (2), since
it can evaluate a block exchange with a single intersection
distance computation.

In the supplementary material we show that using Eq. (2)
maximizes the energy under the assumptions that |At:0

m | ⇡
|At:0

n |, |Bt
n| ⌧ |At:0

n |, where | · | is the cardinality of the set.
Also, it assumes that the histogram of Bt

n is concentrated in
a single bin. The first one is that video superpixels are of
similar size and that the blocks are much smaller than the
video superpixels. This holds most of the time, since super-
pixels indeed tend to be of the same size, and the blocks are
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defined to be at most one fourth of a superpixel in a frame,
and hence, are much smaller than superpixels extending on
multiple frames in the video. The second assumption is that
the block of pixels have a homogeneous color histograms.
This was empirically shown to hold in practice by [15] (in
more than 90% of the cases), and we observed the same.

Creating and terminating video superpixels. Accord-
ing to the superpixel rate, some frames are selected to termi-
nate and create superpixels. When a frame is selected, we
first terminate a superpixel, and then we create a new one.
To this aim, we introduce similar inequalities as in Eq. (2).
They allow to evaluate which termination and creation of
superpixels yield higher energy using efficient intersection
distances, as well.

In Fig. 5 there is an illustration of the creation and termi-
nation of superpixels with the notation used. When a super-
pixel is terminated, its pixels at frame t are incorporated to
a neighbor superpixel. Let At

n ⇢ At:0
n and At

m ⇢ At:0
m be

two candidates of superpixels to terminate at frame t. Let
At:0

p and At:0
q be the superpixel candidate to incorporate At

n

and At
m, respectively. The superpixel with larger intersec-

tion with its neighbor is the one selected to terminate, i.e.

int(cAt
n
, cAt:0

p
) � int(cAt

m
, cAt:0

q
). (3)

We terminate the superpixel with higher intersection to its
neighbor among all superpixels in the frame. In the supple-
mentary material, we show that Eq. (3) leads to the highest
energy state, under the assumptions that |At:0

p | ⇡ |At:0
q |,

|At
n| ⌧ |At:0

p |, |At
m| ⌧ |At:0

q |, and that both At
n and At

m

have histograms concentrated into one bin. These are sim-
ilar to the assumptions for Eq. (2). Additionally, it is also
assumed that cAt:0

n
⇡ cA(t�1):0

n
and cAt:0

m
⇡ cA(t�1):0

m
. This

is that the color histogram of the temporal superpixel re-
mains approximately the same including and excluding the
pixels at the current frame. This holds most of the time,
given the fact that |At

n| ⌧ |At:0
n |.

If a superpixel is terminated, a new one should be created
to fulfill the constraint of number of superpixels per frame
(Sec. 3.2). The candidates to form a new superpixel are
blocks of pixels that belong to an existing video superpixel.
Let Bt

n ⇢ At:0
n and Bt

m ⇢ At:0
m be blocks of superpixels

candidates to create a new superpixel. We select the block
of pixels which histogram minimally intersects with its cur-
rent superpixel. This is,

int(cBt
m

, cAt:0
m \Bt

m
)  int(cBt

n
, cAt:0

n \Bt
n
). (4)

We select the block of pixels with minimum intersection in
the frame. We show in the supplementary material, that this
yields the highest energy, assuming that |At:0

m | ⇡ |At:0
n |,

|Bt
n| ⌧ |At:0

n |, |Bt
m| ⌧ |At:0

m |, and that both Bt
n and Bt

m

have histograms concentrated into one bin. These assump-
tions are similar to the ones of Eq. (3).
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set, and \ the exlusion of a set.

Proposition 1. Let |At:0
m | ⇡ |At:0

n | and |Bt
n| ⌧ |At:0

n |,
where the histogram of Bt

n is concentrated in a single bin.
Then,

H(s(n�m)) � H(s) ��
int(cBt

n
, cAt:0

m
) � int(cBt

n
, cAt:0

n \Bt
n
). (2)

The speed of our hill climbing optimization stems from
this Proposition, since it can evaluate a block movement
with a single intersection distance computation. Yet, Propo-
sition 1 makes several assumptions that do not necessarily
hold in practice. The first one, is that video superpixels are
of the similar size, and that the blocks are much smaller than
the video superpixel. This is reasonable to hold most of the
times, since superpixels generally tend to be of the same
size, and the blocks are defined to be at most one fourth of
a superpixel in a frame, and hence, are much smaller than
superpixels in the video. The second constraint is that the
block of pixels have an homogeneous color histogram. This
was shown empirically that holds in practice by [17] (more
than 90% of the cases), we observed the same.

Creating and terminating video superpixels. Accord-
ing to the superpixel rate, some frames are selected to ter-
minate and create superpixels. To select which superpixel is
terminated and where another is created, we introduce the
following propositions. They allow to evaluate which ter-
mination and creation of superpixels yield higher objective
functions using efficient intersection distances. We first se-
lect the superpixel to terminate with Prop. 2, and then, we
create a new superpixel using Prop. 3. In both cases, the su-
perpixels considered are of size of the block level at which
we do the propagation in time.

Let At
n ⇢ At:0

n and At
m ⇢ At:0

m be two candidates of
superpixels to terminate at frame t. Let At:0

p be the super-
pixel candidate to incorporate At

n, and At:0
q the candidate to

absorve At
m. Then, in Prop. 2 we show that we can create

a ranking and the superpixel with highest intersection with
its neighbor is the one selected to terminate.

Proposition 2. Let |At:0
p | ⇡ |At:0

q |, |At
n| ⌧

|At:0
p |, |At

m| ⌧ |At:0
q | and that both At

n and At
m have con-

centrated histograms into one bin. Also, cAt:0
n

⇡ cA(t�1):0
n

and cAt:0
m

⇡ cA(t�1):0
m

. Then,

H(s(n�p)) � H(s(m�q)) ��
int(cAt

n
, cAt:0

p
)  int(cAt

m
, cAt:0

q
). (3)

The additional assuption of this proposition with respect
to Prop. 1 is that the color histogram of the temporal su-
perpixel At:0

n and excluding the current frame t, is approx-
imately the same, which is reasonalbe given the fact that
|At

n| ⌧ |At:0
n |.

If a superpixel is terminated, a new one should start to
fulfill the constraint of number of superpixels per frame
(Sec. 4.1). The candidates to be a new superpixel, are blocks
of pixels of the same size as the superpixels candidates to
terminate, which are part of an existing superpixel. Let
Bt

n ⇢ At:0
n and Bt

m ⇢ At:0
m be blocks of superpixels candi-

dates to create a new superpixel. To evaluate which is the
best candidate to form a new superpixel in the hill-climbing
optimization, we do it with the following proposition.

Proposition 3. Let |At:0
m | ⇡ |At:0

n |, |Bt
n| ⌧ |At:0

n |, |Bt
m| ⌧

|At:0
m | and that both Bt

n and Bt
m have concentrated his-

tograms into one bin. Then,

H(s(m)) � H(s(n)) ��
int(cBt

m
, cAt:0

m \Bt
n
)  int(cBt

n
, cAt:0

n \Bt
n
). (4)

The proposition states that under the assumptions that
the temporal superpixels are of similar size, the energy is
maximized when creating a new superpixels from a block
of pixels that intersects the least with its current superpixel.
The decision if a new superpixel should appear is governed
by the superpixel rate parameter.

Iterations. In the optimization of a frame, we can termi-
nate the optimization at anytime and obtain a valid partition.
We expect a higher value of the optimization function if we
let the algorithm run longer, until convergence. We can fix
the allowed time to run per frame, or set it on-the-fly, de-
pending on the application. The algorithm can run for an
infinitely long video, since it generates the partition online,
and in memory we only need the histograms of the video
superpixels that propagates to the current frame.

Initialization and Propagation. In the first frame of the
video, the superpixels are initialized as regular blocks, us-
ing the hierarchy of blocks as just described. Also in sub-
sequent frames, the block hierarchy is exploited to initial-
ize the superpixels there. Rather than re-initializing along
a grid, the new frame is initialized by taking a intermedi-
ary block-level result from the previous frame (Fig. 2). The
rest of the lower levels are restarted with a grid. This al-
lows for propagating the superpixel structure from the pre-
vious frame while discarding the details, which prevents lo-
cal minima in the hill climbing optimization. In practive,
we use 3 block-levels and propagate at the 2nd level, to fit
to the size of the frames.

4. Randomized SEEDS
Some superpixel methods offer extra capabilities, such

as the extraction of a hierarchy of superpixels [20]. In this
section, we introduce a new capability of superpixels, which
to the best of our knowledge, has never been explored so
far. To show its power, in the next section we exploit it to
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set, and \ the exlusion of a set.

Proposition 1. Let |At:0
m | ⇡ |At:0

n | and |Bt
n| ⌧ |At:0

n |,
where the histogram of Bt

n is concentrated in a single bin.
Then,

H(s(n�m)) � H(s) ��
int(cBt

n
, cAt:0

m
) � int(cBt

n
, cAt:0

n \Bt
n
). (2)

The speed of our hill climbing optimization stems from
this Proposition, since it can evaluate a block movement
with a single intersection distance computation. Yet, Propo-
sition 1 makes several assumptions that do not necessarily
hold in practice. The first one, is that video superpixels are
of the similar size, and that the blocks are much smaller than
the video superpixel. This is reasonable to hold most of the
times, since superpixels generally tend to be of the same
size, and the blocks are defined to be at most one fourth of
a superpixel in a frame, and hence, are much smaller than
superpixels in the video. The second constraint is that the
block of pixels have an homogeneous color histogram. This
was shown empirically that holds in practice by [17] (more
than 90% of the cases), we observed the same.

Creating and terminating video superpixels. Accord-
ing to the superpixel rate, some frames are selected to ter-
minate and create superpixels. To select which superpixel is
terminated and where another is created, we introduce the
following propositions. They allow to evaluate which ter-
mination and creation of superpixels yield higher objective
functions using efficient intersection distances. We first se-
lect the superpixel to terminate with Prop. 2, and then, we
create a new superpixel using Prop. 3. In both cases, the su-
perpixels considered are of size of the block level at which
we do the propagation in time.

Let At
n ⇢ At:0

n and At
m ⇢ At:0

m be two candidates of
superpixels to terminate at frame t. Let At:0

p be the super-
pixel candidate to incorporate At

n, and At:0
q the candidate to

absorve At
m. Then, in Prop. 2 we show that we can create

a ranking and the superpixel with highest intersection with
its neighbor is the one selected to terminate.

Proposition 2. Let |At:0
p | ⇡ |At:0

q |, |At
n| ⌧

|At:0
p |, |At

m| ⌧ |At:0
q | and that both At

n and At
m have con-

centrated histograms into one bin. Also, cAt:0
n

⇡ cA(t�1):0
n

and cAt:0
m

⇡ cA(t�1):0
m

. Then,

H(s(n�p)) � H(s(m�q)) ��
int(cAt

n
, cAt:0

p
)  int(cAt
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The additional assuption of this proposition with respect
to Prop. 1 is that the color histogram of the temporal su-
perpixel At:0

n and excluding the current frame t, is approx-
imately the same, which is reasonalbe given the fact that
|At

n| ⌧ |At:0
n |.

If a superpixel is terminated, a new one should start to
fulfill the constraint of number of superpixels per frame
(Sec. 4.1). The candidates to be a new superpixel, are blocks
of pixels of the same size as the superpixels candidates to
terminate, which are part of an existing superpixel. Let
Bt

n ⇢ At:0
n and Bt

m ⇢ At:0
m be blocks of superpixels candi-

dates to create a new superpixel. To evaluate which is the
best candidate to form a new superpixel in the hill-climbing
optimization, we do it with the following proposition.
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The proposition states that under the assumptions that
the temporal superpixels are of similar size, the energy is
maximized when creating a new superpixels from a block
of pixels that intersects the least with its current superpixel.
The decision if a new superpixel should appear is governed
by the superpixel rate parameter.

Iterations. In the optimization of a frame, we can termi-
nate the optimization at anytime and obtain a valid partition.
We expect a higher value of the optimization function if we
let the algorithm run longer, until convergence. We can fix
the allowed time to run per frame, or set it on-the-fly, de-
pending on the application. The algorithm can run for an
infinitely long video, since it generates the partition online,
and in memory we only need the histograms of the video
superpixels that propagates to the current frame.

Initialization and Propagation. In the first frame of the
video, the superpixels are initialized as regular blocks, us-
ing the hierarchy of blocks as just described. Also in sub-
sequent frames, the block hierarchy is exploited to initial-
ize the superpixels there. Rather than re-initializing along
a grid, the new frame is initialized by taking a intermedi-
ary block-level result from the previous frame (Fig. 2). The
rest of the lower levels are restarted with a grid. This al-
lows for propagating the superpixel structure from the pre-
vious frame while discarding the details, which prevents lo-
cal minima in the hill climbing optimization. In practive,
we use 3 block-levels and propagate at the 2nd level, to fit
to the size of the frames.

4. Randomized SEEDS
Some superpixel methods offer extra capabilities, such

as the extraction of a hierarchy of superpixels [20]. In this
section, we introduce a new capability of superpixels, which
to the best of our knowledge, has never been explored so
far. To show its power, in the next section we exploit it to
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The speed of our hill climbing optimization stems from
this Proposition, since it can evaluate a block movement
with a single intersection distance computation. Yet, Propo-
sition 1 makes several assumptions that do not necessarily
hold in practice. The first one, is that video superpixels are
of the similar size, and that the blocks are much smaller than
the video superpixel. This is reasonable to hold most of the
times, since superpixels generally tend to be of the same
size, and the blocks are defined to be at most one fourth of
a superpixel in a frame, and hence, are much smaller than
superpixels in the video. The second constraint is that the
block of pixels have an homogeneous color histogram. This
was shown empirically that holds in practice by [17] (more
than 90% of the cases), we observed the same.

Creating and terminating video superpixels. Accord-
ing to the superpixel rate, some frames are selected to ter-
minate and create superpixels. To select which superpixel is
terminated and where another is created, we introduce the
following propositions. They allow to evaluate which ter-
mination and creation of superpixels yield higher objective
functions using efficient intersection distances. We first se-
lect the superpixel to terminate with Prop. 2, and then, we
create a new superpixel using Prop. 3. In both cases, the su-
perpixels considered are of size of the block level at which
we do the propagation in time.

Let At
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m be two candidates of
superpixels to terminate at frame t. Let At:0

p be the super-
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m. Then, in Prop. 2 we show that we can create
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The additional assuption of this proposition with respect
to Prop. 1 is that the color histogram of the temporal su-
perpixel At:0

n and excluding the current frame t, is approx-
imately the same, which is reasonalbe given the fact that
|At

n| ⌧ |At:0
n |.

If a superpixel is terminated, a new one should start to
fulfill the constraint of number of superpixels per frame
(Sec. 4.1). The candidates to be a new superpixel, are blocks
of pixels of the same size as the superpixels candidates to
terminate, which are part of an existing superpixel. Let
Bt

n ⇢ At:0
n and Bt

m ⇢ At:0
m be blocks of superpixels candi-

dates to create a new superpixel. To evaluate which is the
best candidate to form a new superpixel in the hill-climbing
optimization, we do it with the following proposition.
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The proposition states that under the assumptions that
the temporal superpixels are of similar size, the energy is
maximized when creating a new superpixels from a block
of pixels that intersects the least with its current superpixel.
The decision if a new superpixel should appear is governed
by the superpixel rate parameter.

Iterations. In the optimization of a frame, we can termi-
nate the optimization at anytime and obtain a valid partition.
We expect a higher value of the optimization function if we
let the algorithm run longer, until convergence. We can fix
the allowed time to run per frame, or set it on-the-fly, de-
pending on the application. The algorithm can run for an
infinitely long video, since it generates the partition online,
and in memory we only need the histograms of the video
superpixels that propagates to the current frame.

Initialization and Propagation. In the first frame of the
video, the superpixels are initialized as regular blocks, us-
ing the hierarchy of blocks as just described. Also in sub-
sequent frames, the block hierarchy is exploited to initial-
ize the superpixels there. Rather than re-initializing along
a grid, the new frame is initialized by taking a intermedi-
ary block-level result from the previous frame (Fig. 2). The
rest of the lower levels are restarted with a grid. This al-
lows for propagating the superpixel structure from the pre-
vious frame while discarding the details, which prevents lo-
cal minima in the hill climbing optimization. In practive,
we use 3 block-levels and propagate at the 2nd level, to fit
to the size of the frames.

4. Randomized SEEDS
Some superpixel methods offer extra capabilities, such

as the extraction of a hierarchy of superpixels [20]. In this
section, we introduce a new capability of superpixels, which
to the best of our knowledge, has never been explored so
far. To show its power, in the next section we exploit it to
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The speed of our hill climbing optimization stems from
this Proposition, since it can evaluate a block movement
with a single intersection distance computation. Yet, Propo-
sition 1 makes several assumptions that do not necessarily
hold in practice. The first one, is that video superpixels are
of the similar size, and that the blocks are much smaller than
the video superpixel. This is reasonable to hold most of the
times, since superpixels generally tend to be of the same
size, and the blocks are defined to be at most one fourth of
a superpixel in a frame, and hence, are much smaller than
superpixels in the video. The second constraint is that the
block of pixels have an homogeneous color histogram. This
was shown empirically that holds in practice by [17] (more
than 90% of the cases), we observed the same.

Creating and terminating video superpixels. Accord-
ing to the superpixel rate, some frames are selected to ter-
minate and create superpixels. To select which superpixel is
terminated and where another is created, we introduce the
following propositions. They allow to evaluate which ter-
mination and creation of superpixels yield higher objective
functions using efficient intersection distances. We first se-
lect the superpixel to terminate with Prop. 2, and then, we
create a new superpixel using Prop. 3. In both cases, the su-
perpixels considered are of size of the block level at which
we do the propagation in time.

Let At
n ⇢ At:0

n and At
m ⇢ At:0

m be two candidates of
superpixels to terminate at frame t. Let At:0

p be the super-
pixel candidate to incorporate At

n, and At:0
q the candidate to

absorve At
m. Then, in Prop. 2 we show that we can create

a ranking and the superpixel with highest intersection with
its neighbor is the one selected to terminate.
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The additional assuption of this proposition with respect
to Prop. 1 is that the color histogram of the temporal su-
perpixel At:0

n and excluding the current frame t, is approx-
imately the same, which is reasonalbe given the fact that
|At

n| ⌧ |At:0
n |.

If a superpixel is terminated, a new one should start to
fulfill the constraint of number of superpixels per frame
(Sec. 4.1). The candidates to be a new superpixel, are blocks
of pixels of the same size as the superpixels candidates to
terminate, which are part of an existing superpixel. Let
Bt

n ⇢ At:0
n and Bt

m ⇢ At:0
m be blocks of superpixels candi-

dates to create a new superpixel. To evaluate which is the
best candidate to form a new superpixel in the hill-climbing
optimization, we do it with the following proposition.
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The proposition states that under the assumptions that
the temporal superpixels are of similar size, the energy is
maximized when creating a new superpixels from a block
of pixels that intersects the least with its current superpixel.
The decision if a new superpixel should appear is governed
by the superpixel rate parameter.

Iterations. In the optimization of a frame, we can termi-
nate the optimization at anytime and obtain a valid partition.
We expect a higher value of the optimization function if we
let the algorithm run longer, until convergence. We can fix
the allowed time to run per frame, or set it on-the-fly, de-
pending on the application. The algorithm can run for an
infinitely long video, since it generates the partition online,
and in memory we only need the histograms of the video
superpixels that propagates to the current frame.

Initialization and Propagation. In the first frame of the
video, the superpixels are initialized as regular blocks, us-
ing the hierarchy of blocks as just described. Also in sub-
sequent frames, the block hierarchy is exploited to initial-
ize the superpixels there. Rather than re-initializing along
a grid, the new frame is initialized by taking a intermedi-
ary block-level result from the previous frame (Fig. 2). The
rest of the lower levels are restarted with a grid. This al-
lows for propagating the superpixel structure from the pre-
vious frame while discarding the details, which prevents lo-
cal minima in the hill climbing optimization. In practive,
we use 3 block-levels and propagate at the 2nd level, to fit
to the size of the frames.

4. Randomized SEEDS
Some superpixel methods offer extra capabilities, such

as the extraction of a hierarchy of superpixels [20]. In this
section, we introduce a new capability of superpixels, which
to the best of our knowledge, has never been explored so
far. To show its power, in the next section we exploit it to
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Proposition 1. Let |At:0
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The speed of our hill climbing optimization stems from
this Proposition, since it can evaluate a block movement
with a single intersection distance computation. Yet, Propo-
sition 1 makes several assumptions that do not necessarily
hold in practice. The first one, is that video superpixels are
of the similar size, and that the blocks are much smaller than
the video superpixel. This is reasonable to hold most of the
times, since superpixels generally tend to be of the same
size, and the blocks are defined to be at most one fourth of
a superpixel in a frame, and hence, are much smaller than
superpixels in the video. The second constraint is that the
block of pixels have an homogeneous color histogram. This
was shown empirically that holds in practice by [17] (more
than 90% of the cases), we observed the same.

Creating and terminating video superpixels. Accord-
ing to the superpixel rate, some frames are selected to ter-
minate and create superpixels. To select which superpixel is
terminated and where another is created, we introduce the
following propositions. They allow to evaluate which ter-
mination and creation of superpixels yield higher objective
functions using efficient intersection distances. We first se-
lect the superpixel to terminate with Prop. 2, and then, we
create a new superpixel using Prop. 3. In both cases, the su-
perpixels considered are of size of the block level at which
we do the propagation in time.

Let At
n ⇢ At:0

n and At
m ⇢ At:0

m be two candidates of
superpixels to terminate at frame t. Let At:0

p be the super-
pixel candidate to incorporate At

n, and At:0
q the candidate to

absorve At
m. Then, in Prop. 2 we show that we can create

a ranking and the superpixel with highest intersection with
its neighbor is the one selected to terminate.
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The additional assuption of this proposition with respect
to Prop. 1 is that the color histogram of the temporal su-
perpixel At:0

n and excluding the current frame t, is approx-
imately the same, which is reasonalbe given the fact that
|At

n| ⌧ |At:0
n |.

If a superpixel is terminated, a new one should start to
fulfill the constraint of number of superpixels per frame
(Sec. 4.1). The candidates to be a new superpixel, are blocks
of pixels of the same size as the superpixels candidates to
terminate, which are part of an existing superpixel. Let
Bt

n ⇢ At:0
n and Bt

m ⇢ At:0
m be blocks of superpixels candi-

dates to create a new superpixel. To evaluate which is the
best candidate to form a new superpixel in the hill-climbing
optimization, we do it with the following proposition.
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The proposition states that under the assumptions that
the temporal superpixels are of similar size, the energy is
maximized when creating a new superpixels from a block
of pixels that intersects the least with its current superpixel.
The decision if a new superpixel should appear is governed
by the superpixel rate parameter.

Iterations. In the optimization of a frame, we can termi-
nate the optimization at anytime and obtain a valid partition.
We expect a higher value of the optimization function if we
let the algorithm run longer, until convergence. We can fix
the allowed time to run per frame, or set it on-the-fly, de-
pending on the application. The algorithm can run for an
infinitely long video, since it generates the partition online,
and in memory we only need the histograms of the video
superpixels that propagates to the current frame.

Initialization and Propagation. In the first frame of the
video, the superpixels are initialized as regular blocks, us-
ing the hierarchy of blocks as just described. Also in sub-
sequent frames, the block hierarchy is exploited to initial-
ize the superpixels there. Rather than re-initializing along
a grid, the new frame is initialized by taking a intermedi-
ary block-level result from the previous frame (Fig. 2). The
rest of the lower levels are restarted with a grid. This al-
lows for propagating the superpixel structure from the pre-
vious frame while discarding the details, which prevents lo-
cal minima in the hill climbing optimization. In practive,
we use 3 block-levels and propagate at the 2nd level, to fit
to the size of the frames.

4. Randomized SEEDS
Some superpixel methods offer extra capabilities, such

as the extraction of a hierarchy of superpixels [20]. In this
section, we introduce a new capability of superpixels, which
to the best of our knowledge, has never been explored so
far. To show its power, in the next section we exploit it to
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Figure 5. Termination and creation of superpixels.

Iterations. We can stop the optimization for a frame at
any time and obtain a valid partition. We expect a higher
value of the energy function if we let the hill-climbing do
more iterations, until convergence. We can fix the allowed
time to run per frame, or set it on-the-fly, depending on the
application. In principle, the algorithm can run for an in-
finitely long video, since it generates the partition online,
and in memory we only need the histograms of the video
superpixels that propagate to the current frame.

Initialization and Propagation. In the first frame of the
video, the superpixels are initialized along a grid using the
hierarchy of blocks. In the subsequent frames, the block
hierarchy is exploited to initialize the superpixels. Rather
than re-initializing along a grid, the new frame is initialized
by taking an intermediary block-level result from the previ-
ous frame (Fig. 2). Like this, the superpixel structure can be
propagated from the previous frame while discarding small
details. In practice, we use 4 block layers and propagate at
the 2nd layer, as shown in Fig. 4.

4. Randomized SEEDS
Some superpixel methods offer extra capabilities, such

as the extraction of a hierarchy of superpixels [17]. In this
section, we introduce a new capability of superpixels that,
to the best of our knowledge, has never been explored so
far. In the next section we exploit it to design an object-
ness measure of temporal windows, though we expect that
applications may not be limited to that one.

Superpixels are over-segmentations with many more re-
gions than objects in the image. A region that is uniform in
color can be over-segmented in many different correct ways,
and thus, more than one partition can be valid. In Fig. 6, we
give an example of different partitions with the same num-
ber of superpixels, with similar energy value and which so-
lutions have very similar accuracy according to the super-
pixel benchmarks. This shows that we can extract multiple
samples of superpixel partitions from the same video, all of
them of comparable quality.

Since there may be a considerable amount of those par-
titions, we aim at extracting samples that differ as much as
possible between themselves. We found a heuristic way,
yet effective and fast to compute, that consists on injecting

• superpixels per frame
• superpixel rate (time)
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Figure 7. Comparison of our online video superpixels method to the state-of-the-art (s-o-a). For the first plot, lower is better, and for the
second and third, higher is better.

Objectness Measure for Temporal Windows. We de-
fine a temporal window as a sequence of temporally con-
nected bounding boxes, one per frame, which aim to sur-
round an object in video. It can be thought as a rectangular-
shaped tube in the time axis (illustrated in Fig. 1 bottom).
The video is divided into overlapping shots of a predefined
length, and for each shot all temporal windows are consid-
ered inside. They do not aim at replacing object tracking
systems, but to assist them. The temporal windows in shots
allow for incorporating features and classifiers that exploit
the spatio-temporal regions, and can easily be incorporated
in any video application that uses bounding boxes.

Note that there are many more temporal windows than
bounding boxes in a still image. Say that in each frame
there are 106 possible bounding boxes. If each bounding
box could move to 100 nearby positions in each subsequent
frame, it leaves around 1050 possible temporal windows in
a 25-frame sequence. The aim of video objectness is to re-
duce these 1050 temporal windows to the 100-1000 most
likely to contain an object.

The video objectness score is proposed as a volumetric
extension of Eq. (6) in the time dimension, normalized by
the tube volume (we denoted as 3D edge score in the exper-
iments). In the first frame, all possible bounding boxes are
extracted densely and ranked based on the objectness score
for still images. In the subsequent frames, each bounding
box is propagated in time by propagating the video super-
pixels that are completely inside the bounding box in the
first frame. The score is updated online as each new frame
is added until the shot is finished, and accordingly, the rank-
ing of the temporal windows is updated online as well.

6. Experiments
In this section we report experimental evaluation of the

introduced online video superpixel method. We also report
results for the new application of video objectness. For all
experiments we use a single 2.8 GHz i7 CPU. The source
code of our methods will be made available online1.

1http://www.vision.ee.ethz.ch/software/

6.1. Evaluation of Online Video SEEDS
We report results of the online video superpixels on

the Chen Xiph.org benchmark [3] using the metrics pro-
posed by [16]. The videos contain moving objects and are
recorded with an uncontrolled camera. We use the stan-
dard metrics for evaluating temporal superpixels.2 The 3D
Under-segmentation Error penalizes temporal superpixels
that contain more than one object, the 3D Boundary Recall
is the standard recall for temporal object boundaries, and
the Explained Variation is a human-independent metric that
considers how well the superpixel means represent the in-
formation in the video. The benchmark evaluates these met-
rics varying the number of temporal superpixels. To achieve
the desired amount of temporal superpixels, we select the
number of superpixels per frame from a range between 200
and 600, and the superpixel rate from a range between 0
and 6. This results in a total number of video superpixels
between 200 and 1086. For a detailed explanation of the
metrics and these 2 parameters we refer to the supplemen-
tary material.

We compare the results of the online video SEEDS to the
state-of-the-art (s-o-a) methods. We compare to the Graph-
based method (GB) [5], when processing the entire videos
offline, denoted as GB t = 1, its streaming version with
10 frames in the stream, (StreamGB t = 10), and its on-
line version (StreamGB t = 1). We report the Hierarchical
Graph-based method (GBH) [17], also when processing the
entire video offline (t = 1), with 10 frames in the stream
(StreamGBH t = 10), and the online version (StreamGBH
t = 1). We also compare it to the streaming meanshift [9]
with 10 frames in the stream. To reproduce the results we
use the code and parameters provided by the authors of [16].

In Fig. 7 we show that our method obtains comparable
performance to s-o-a methods, even to GBH when process-
ing the entire videos offline. Our algorithm obtains higher
performance than the online (t = 1) version of GBH and
GB. It is also orders of magnitude faster than all previous

2Evaluation code and dataset available at
http://www.cse.buffalo.edu/⇠jcorso/r/supervoxels/

• Chen Xiph.org benchmark
• t=∞ means the entire video is analyzed
• t=1 means it is online (not streaming)   
• we are at 30Hz, they are at 0.25 Hz
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(a) SEEDS without boundary prior term

(b) SEEDS with 3⇥ 3 smoothing prior

(b) SEEDS with compactness prior

(b) SEEDS with edge prior (snap to edges)

(b) SEEDS with combined prior (3⇥ 3 smoothing + compactness + snap to edges)

Fig. 9 Experiment illustrating how SEEDS can produce di↵erent superpixel shapes, using the boundary prior term G(s).

which are only removed at the end of all iterations and
might a↵ect the performance during the iterations.

6.4 Boundary Term

In Section 8, we instroduced G(s) as an optional bound-
ary term. This prior term allows us to influence the
shape of the superpixels produced by the SEEDS algo-
rithm. In this section we evaluate how G(s) can influ-

ence the shape of the superpixels, and how this impacts
the performance. To this end, we compare four di↵er-
ent prior terms. The first one is the 3 ⇥ 3 smoothing
term introduced in Section 8. This is a prior which en-
forces local smoothing in a 3 ⇥ 3 area around the su-
perpixel boundary. Second, we try a prior term based
on compactness, which aims to minimize the distance
between the pixels on the superpixel boundary and the
center of gravity of the superpixel. This is similar to



Randomness Injection
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Figure 6. Different samples of randomized SEEDS segmentations of the same frame and with the same accuracy are combined. In the
randomized SEEDS, we show the average of the different samples. The objectness score is computed as the sum of the distances to the
common superpixel boundaries.

noise to the evaluation of the exchanges of pixels in the hill-
climbing, i.e. in Eq. (2). This is,
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where ⇠ is the variable for the uniform random noise in the
interval [�1, 1] and a is a scale factor. Note that if a is
small, the noise only affects the block exchanges which do
not produce a large change in the energy value. In the ex-
periments section, we analyze the effect of injecting noise
by changing its scale a and show that up to a certain level,
the performance is not degraded compared to the sample
obtained without adding noise, i.e. a = 0. This corrobo-
rates that there exists a diversity of over-segmentations with
energy very close to the maximum that are equally valid.

Injecting noise may not be the only way for extracting
samples, but is by far the most efficient to compute that we
found. For example, changing the order in which we pro-
pose the exchanges of blocks of pixels in the hill-climbing,
turned to be successful but slower in our implementation.

5. Video Objectness
In this section, we introduce an application of random-

ized SEEDS to video objectness. It is based on the ob-
servation that the coincidences among multiple superpixel
partitions, reveal the true boundaries of objects. Fig. 6
shows that when superimposing a diverse set of superpixel
samples obtained with randomized SEEDS, the boundaries
of the objects are preserved, and the boundaries due to
over-segmentation fade away. This is because the over-
segmentation coincides where there are true region bound-
aries, and does not in regions with a similar uniform color.

In the following, we first define the measure of the ob-
jectness in a still image, and then we introduce how to ex-
tend it to temporal windows (tubes of bounding boxes).

Objectness Measure for Still Images. We use O to rep-
resent the intersection of several superpixel samples of ran-
domized SEEDS. O(i) takes value 1 if all samples have a
superpixel boundary at pixel i, and 0 otherwise. Thus, O is
an image that indicates in which pixels the samples of ran-
domized SEEDS agree that there is a superpixel boundary.

We define the objectness score for a still image using O.
It measures the closed boundary characteristic of objects.
A bounding box is more likely to contain an object when
there is a closed line in O that fits tightly the bounding box.
Specifically, we compute the distance from each pixel on
the perimeter of the bounding box to the nearest pixel that
fulfills O(i) = 1. Thus, in case we are in the bottom or
the top of the bounding box, the distance is computed to the
closest pixel in the same column, and in case we are in one
of the sides, in the same row. See Fig. 6 for an illustration.
Let X be the set of pixels inside the bounding box, Per(X )
the set of pixels in the perimeter of the bounding box, and
XR,C(p) the pixels that are inside the bounding box and in the
same row or column as pixel p. Thus, the objectness score
is:

1

A

X

p2Per(X )

min
i2XR,C(p)

O(i)=1

d(p, i), (6)

where d(·, ·) is the Euclidean distance, and A normalizes the
score using the area of the bounding box. In the supplemen-
tary material, we show that the score can be computed very
efficiently using two levels of integral images, with only 8
additions, allowing for the evaluation of over 100 million
bounding boxes per second. To the best of our knowledge,
no earlier work has used multiple superpixel hypotheses to
build an objectness score. In the experiments, we show that
using multiple hypothesis has an important impact on the
performance.
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Figure 6. Different samples of randomized SEEDS segmentations of the same frame and with the same accuracy are combined. In the
randomized SEEDS, we show the average of the different samples. The objectness score is computed as the sum of the distances to the
common superpixel boundaries.

noise to the evaluation of the exchanges of pixels in the hill-
climbing, i.e. in Eq. (2). This is,
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where ⇠ is the variable for the uniform random noise in the
interval [�1, 1] and a is a scale factor. Note that if a is
small, the noise only affects the block exchanges which do
not produce a large change in the energy value. In the ex-
periments section, we analyze the effect of injecting noise
by changing its scale a and show that up to a certain level,
the performance is not degraded compared to the sample
obtained without adding noise, i.e. a = 0. This corrobo-
rates that there exists a diversity of over-segmentations with
energy very close to the maximum that are equally valid.

Injecting noise may not be the only way for extracting
samples, but is by far the most efficient to compute that we
found. For example, changing the order in which we pro-
pose the exchanges of blocks of pixels in the hill-climbing,
turned to be successful but slower in our implementation.

5. Video Objectness
In this section, we introduce an application of random-

ized SEEDS to video objectness. It is based on the ob-
servation that the coincidences among multiple superpixel
partitions, reveal the true boundaries of objects. Fig. 6
shows that when superimposing a diverse set of superpixel
samples obtained with randomized SEEDS, the boundaries
of the objects are preserved, and the boundaries due to
over-segmentation fade away. This is because the over-
segmentation coincides where there are true region bound-
aries, and does not in regions with a similar uniform color.

In the following, we first define the measure of the ob-
jectness in a still image, and then we introduce how to ex-
tend it to temporal windows (tubes of bounding boxes).

Objectness Measure for Still Images. We use O to rep-
resent the intersection of several superpixel samples of ran-
domized SEEDS. O(i) takes value 1 if all samples have a
superpixel boundary at pixel i, and 0 otherwise. Thus, O is
an image that indicates in which pixels the samples of ran-
domized SEEDS agree that there is a superpixel boundary.

We define the objectness score for a still image using O.
It measures the closed boundary characteristic of objects.
A bounding box is more likely to contain an object when
there is a closed line in O that fits tightly the bounding box.
Specifically, we compute the distance from each pixel on
the perimeter of the bounding box to the nearest pixel that
fulfills O(i) = 1. Thus, in case we are in the bottom or
the top of the bounding box, the distance is computed to the
closest pixel in the same column, and in case we are in one
of the sides, in the same row. See Fig. 6 for an illustration.
Let X be the set of pixels inside the bounding box, Per(X )
the set of pixels in the perimeter of the bounding box, and
XR,C(p) the pixels that are inside the bounding box and in the
same row or column as pixel p. Thus, the objectness score
is:

1

A

X

p2Per(X )

min
i2XR,C(p)

O(i)=1

d(p, i), (6)

where d(·, ·) is the Euclidean distance, and A normalizes the
score using the area of the bounding box. In the supplemen-
tary material, we show that the score can be computed very
efficiently using two levels of integral images, with only 8
additions, allowing for the evaluation of over 100 million
bounding boxes per second. To the best of our knowledge,
no earlier work has used multiple superpixel hypotheses to
build an objectness score. In the experiments, we show that
using multiple hypothesis has an important impact on the
performance.
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Figure 6. Different samples of randomized SEEDS segmentations of the same frame and with the same accuracy are combined. In the
randomized SEEDS, we show the average of the different samples. The objectness score is computed as the sum of the distances to the
common superpixel boundaries.

noise to the evaluation of the exchanges of pixels in the hill-
climbing, i.e. in Eq. (2). This is,
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where ⇠ is the variable for the uniform random noise in the
interval [�1, 1] and a is a scale factor. Note that if a is
small, the noise only affects the block exchanges which do
not produce a large change in the energy value. In the ex-
periments section, we analyze the effect of injecting noise
by changing its scale a and show that up to a certain level,
the performance is not degraded compared to the sample
obtained without adding noise, i.e. a = 0. This corrobo-
rates that there exists a diversity of over-segmentations with
energy very close to the maximum that are equally valid.

Injecting noise may not be the only way for extracting
samples, but is by far the most efficient to compute that we
found. For example, changing the order in which we pro-
pose the exchanges of blocks of pixels in the hill-climbing,
turned to be successful but slower in our implementation.

5. Video Objectness
In this section, we introduce an application of random-

ized SEEDS to video objectness. It is based on the ob-
servation that the coincidences among multiple superpixel
partitions, reveal the true boundaries of objects. Fig. 6
shows that when superimposing a diverse set of superpixel
samples obtained with randomized SEEDS, the boundaries
of the objects are preserved, and the boundaries due to
over-segmentation fade away. This is because the over-
segmentation coincides where there are true region bound-
aries, and does not in regions with a similar uniform color.

In the following, we first define the measure of the ob-
jectness in a still image, and then we introduce how to ex-
tend it to temporal windows (tubes of bounding boxes).

Objectness Measure for Still Images. We use O to rep-
resent the intersection of several superpixel samples of ran-
domized SEEDS. O(i) takes value 1 if all samples have a
superpixel boundary at pixel i, and 0 otherwise. Thus, O is
an image that indicates in which pixels the samples of ran-
domized SEEDS agree that there is a superpixel boundary.

We define the objectness score for a still image using O.
It measures the closed boundary characteristic of objects.
A bounding box is more likely to contain an object when
there is a closed line in O that fits tightly the bounding box.
Specifically, we compute the distance from each pixel on
the perimeter of the bounding box to the nearest pixel that
fulfills O(i) = 1. Thus, in case we are in the bottom or
the top of the bounding box, the distance is computed to the
closest pixel in the same column, and in case we are in one
of the sides, in the same row. See Fig. 6 for an illustration.
Let X be the set of pixels inside the bounding box, Per(X )
the set of pixels in the perimeter of the bounding box, and
XR,C(p) the pixels that are inside the bounding box and in the
same row or column as pixel p. Thus, the objectness score
is:

1
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X

p2Per(X )

min
i2XR,C(p)

O(i)=1

d(p, i), (6)

where d(·, ·) is the Euclidean distance, and A normalizes the
score using the area of the bounding box. In the supplemen-
tary material, we show that the score can be computed very
efficiently using two levels of integral images, with only 8
additions, allowing for the evaluation of over 100 million
bounding boxes per second. To the best of our knowledge,
no earlier work has used multiple superpixel hypotheses to
build an objectness score. In the experiments, we show that
using multiple hypothesis has an important impact on the
performance.
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Abstract

Superpixel and objectness algorithms are broadly used
as a pre-processing step to generate support regions and
to speed-up further computations. Recently, many algo-
rithms have been extended to video in order to exploit the
temporal consistency between frames. However, most meth-
ods are computationally too expensive for real-time appli-
cations. We introduce an online, real-time video superpixel
algorithm based on the recently proposed SEEDS superpix-
els. A new capability is incorporated which delivers multi-
ple diverse samples (hypotheses) of superpixels in the same
image or video sequence. The multiple samples are shown
to provide a strong cue to efficiently measure the object-
ness of image windows, and we introduce the novel concept
of objectness in temporal windows. Experiments show that
the video superpixels achieve comparable performance to
state-of-the-art offline methods while running at 30 fps on
a single 2.8 GHz i7 CPU. State-of-the-art performance on
objectness is also demonstrated, yet orders of magnitude
faster and extended to temporal windows in video.

1. Introduction
Many algorithms use superpixels or objectness scores to

efficiently select areas which to analyze further. With an
increasing number of papers on the analysis of videos, the
interest in having similar concepts extracted from time se-
quences is increasing as well. The exploitation of temporal
continuity can indeed help boost several types of applica-
tions. Yet, most current solutions are computationally ex-
pensive and non-causal (i.e. need to see the whole video
first). We propose a novel method for the online extraction
of video superpixels. In terms of its still counterparts, it
comes closest to the recently introduced SEEDS superpix-
els [15].

Similar to SEEDS, we define an objective function that
prefers video superpixels to have a homogeneous color, and
our video superpixels can be extracted efficiently. Their op-
timization is based on iteratively refining the partition, by

⇤This work has been supported by the European Commission project
RADHAR (FP7 ICT 248873).

Figure 1. Top: Video SEEDS provide temporal superpixel tubes.
Bottom: Randomized SEEDS efficiently produce multiple label
hypotheses per frame. Based on these, a Video Objectness mea-
sure is introduced to propose temporal windows (tubes of bound-
ing boxes) that are likely to contain objects.

exchanging blocks of pixels between superpixels. When
starting off the partition of a new video frame, we ex-
ploit the hierarchical superpixel organization of the previous
frame, the coarser levels of which serve as initialization.

Moreover, we propose a method to extract multiple su-
perpixel partitions with a value of the objective function
close to that of the optimum. Typically the overlapping su-
perpixels differ in non-essential parts of their contours, but
those segments that correspond to a genuine object contour
are shared. This allows us to introduce a new and highly ef-
ficient objectness measure, together with its natural exten-
sion to videos (a tube of bounding boxes spanning a time
interval). Fig. 1 depicts a summary of the contributions of
the paper.

We experimentally validate the video superpixel and ob-
jectness algorithms, where we use standard benchmarks
where possible. Both methods achieve state-of-the-art re-
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Figure 9. Comparison of the objectness measure with sampling superpixels on PASCAL VOC07 to (a) baselines, (b) s-o-a, and (c) evalua-
tion of video objectness on the Chen dataset.

Figure 10. Example of the highest ranked temporal window ren-
dered at different frames in the video.

video objectness score (3D edge) there is an improvement
in accuracy because the score is updated over time. Also,
we can see that using multiple samples has a clear advan-
tage, at more than double the performance. It is interesting
to note that the 1-sample-version benefits much more from
the video objectness score than the 5-sample-version. The
reason why is that the video objectness score can be seen
as a form of multiple samples as well: the score is the sum
over 25 samples in time.

In the case of 5 samples and 1000 temporal windows,
the presented method is able run at 0.17 seconds per frame:
5 ⇥ 0.03s for the superpixel samples, 10�5s for the score
computation (0.01 in the first frame), and 0.02s for the
bounding box propagation. Some example of temporal win-
dows are shown in Fig. 10.

7. Conclusions
In this paper we have introduced a novel online video

superpixel algorithm that is able to run in real-time, with
accuracy comparable to offline methods. To achieve this,
we have introduced novel concepts for temporal propaga-
tion, termination and creation of superpixels in time, using
hierarchical block sizes and temporal histograms. We have
demonstrated a new capability of our superpixel algorithm
by efficiently extracting multiple diverse samples of super-
pixels. This allowed us to introduce a new, highly efficient
objectness measure, together with its extension to video ob-
jectness. It enables an efficient online selection of tempo-

ral windows (tubes of bounding boxes) that contain object
candidates. Finally, our experiments have shown that both
the video superpixel and objectness algorithms match s-o-
a offline methods in terms of accuracy, but at much higher
speeds.
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Figure 9. Comparison of the objectness measure with sampling superpixels on PASCAL VOC07 to (a) baselines, (b) s-o-a, and (c) evalua-
tion of video objectness on the Chen dataset.

Figure 10. Example of the highest ranked temporal window ren-
dered at different frames in the video.

video objectness score (3D edge) there is an improvement
in accuracy because the score is updated over time. Also,
we can see that using multiple samples has a clear advan-
tage, at more than double the performance. It is interesting
to note that the 1-sample-version benefits much more from
the video objectness score than the 5-sample-version. The
reason why is that the video objectness score can be seen
as a form of multiple samples as well: the score is the sum
over 25 samples in time.

In the case of 5 samples and 1000 temporal windows,
the presented method is able run at 0.17 seconds per frame:
5 ⇥ 0.03s for the superpixel samples, 10�5s for the score
computation (0.01 in the first frame), and 0.02s for the
bounding box propagation. Some example of temporal win-
dows are shown in Fig. 10.

7. Conclusions
In this paper we have introduced a novel online video

superpixel algorithm that is able to run in real-time, with
accuracy comparable to offline methods. To achieve this,
we have introduced novel concepts for temporal propaga-
tion, termination and creation of superpixels in time, using
hierarchical block sizes and temporal histograms. We have
demonstrated a new capability of our superpixel algorithm
by efficiently extracting multiple diverse samples of super-
pixels. This allowed us to introduce a new, highly efficient
objectness measure, together with its extension to video ob-
jectness. It enables an efficient online selection of tempo-

ral windows (tubes of bounding boxes) that contain object
candidates. Finally, our experiments have shown that both
the video superpixel and objectness algorithms match s-o-
a offline methods in terms of accuracy, but at much higher
speeds.
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