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Video Segmentation: Motivation

region color indicates region identity

✦ Spatio-temporal regions:  
Group appearance and motion 
in space and time 

✦ Application: Selecting regions  
⇒ rapid annotation of objects 

etc.  
✦ Grundmann, Kwatra, Han, and 

Essa (2010), “Efficient 
Hierarchical Graph-Based 
Video Segmentation,” CVPR 
2010.
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Segmentation (Images)
✦ Partitioning a digital image into multiple 

segments (sets of pixels, also known as 
superpixels). 
✦ to extract representation of an image into 

something that is more “meaningful” and 
“easier” to analyze

✦ typically used to locate objects and boundaries 
(lines, curves, etc.) in images. 

✦ A process of assigning a label to every pixel in 
an image such that pixels with the same label 
share certain characteristics.
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Graph-based segmentation
✦ Grid graph over image domain
✦ Connectedness: N4 or N8
✦ Affinity between pixels: 

✦ Color distance 
✦ Weighted with gradients 
✦ From per pixel classifiers, etc.

✦ Cluster Pixels, Merge Regions
✦ [Felzenszwalb & Huttenlocher 

2004] “Efficient Graph-Based 
Image Segmentation” (link)
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Extending to Video Domain
✦ Direct application of image-based 

algorithm  
per frame

✦ [Felzenszwalb and Huttenlocher 2004]
✦ Lacking temporal coherence
✦ Unstable boundaries in time

✦ Associating 2D regions will yield noisy 
outcome

✦ Need to Cluster Pixels, Merge Regions in 
Time image segmentation applied to each frame
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✦ Connect each pixel to also to 

its 9 neighbors in time 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its 9 neighbors in time 
(forward / backward)

✦ Connectedness: N26 
✦ 1 sec of 360p video:  90 million 

edges 
✦ vs. 1 million for image case

✦ How to connect? 
✦ Direct predecessor 
✦ Displaced along optical flow

t

t + 1
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✦ Direct predecessor:  

✦ can’t model 
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 over-segmentation using direct 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Pixel Connections in time
✦ Direct predecessor:  

✦ can’t model 
movements > 1 pixel

✦ Displace connection 
in time along dense 
optical flow

 over-segmentation using direct 
predecessor in volume

dense flow, hue encodes angle
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Connection using dense optical flow
✦ Displace temporal connection along dense optical flow

over-segmentation using 
predecessor along dense flow 
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✦ Low-complexity segmentation algorithm 
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segmentation) 
✦ Initialization free (i.e. no prior user interaction or 

parameters, e.g. Snakes, GrabCut) 
✦ Provide variety of approaches for clustering and merging.
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Why Graph-based segmentation?
✦ Low-complexity segmentation algorithm 
✦ Algorithm that we can constrain (for streaming 

segmentation) 
✦ Initialization free (i.e. no prior user interaction or 

parameters, e.g. Snakes, GrabCut) 
✦ Provide variety of approaches for clustering and merging.

✦ Mean-Shift [Comaniciu and Meer, 2002] 

✦ Normalized cuts [Shi and Malik, 1997] 

✦ k-Means, EM / Mixture of Gaussians [Bishop 2006] 

✦ SLIC [Achanta et al. 2012] 

✦ Watershed approaches 

✦ Turbo Pixels [Levinshtein et al. 2009] 

✦ Greedy Graph-Based [Felzenszwalb and Huttenlocher 2004 

✦ etc., 
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st

Cost level
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Agglomerative clustering
✦ How to define the cluster distance between cluster C1 

and C2?
✦ 3 types:

✦ Single-link  

✦ Complete-link  

✦ Average-link  
(N = total number of  
         summands) 
         

min
a2C1,b2C2

||d(a)� d(b)||

max

a2C1,b2C2

||d(a)� d(b)||

1

N

X

a2C1[C2

X

b 6=a2C1[C2,b

||d(a)� d(b)||
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Agglomerative clustering
✦ Single link: 

✦  Distance between closest two elements

✦ Complete link: 
✦ Distance between two furthest elements

✦ Average link: 
✦ Average distance between all elements  

(not drawn)

✦ Conclusion:  
✦ Only single link merges do not alter cluster distance! 
✦ 1 sec of 360p video:  90 million edges
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Efficient graph based image segmentationFigure 2: A street scene (320 × 240 color image), and the segmentation results pro-

duced by our algorithm (σ = 0.8, k = 300).

Figure 3: A baseball scene (432 × 294 grey image), and the segmentation results

produced by our algorithm (σ = 0.8, k = 300).

Figure 4: An indoor scene (image 320 × 240, color), and the segmentation results

produced by our algorithm (σ = 0.8, k = 300).

17

from [Felzenszwalb and Huttenlocher 2004]
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Efficient graph based image segmentation
✦ Termination criteria  
 
 

✦ Int(C) : dendrogram height, 𝜏(C) = 
constant / |C|

co
st

Int(C1 [ C2) >

min(Int(C1) + ⌧(C1), Int(C2) + ⌧(C2))
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Efficient graph based image segmentation
✦ Termination criteria  
 
 

✦ Int(C) : dendrogram height, 𝜏(C) = 
constant / |C|

✦ Relative test
✦ space decreases with region size

co
st

Int(C1 [ C2) >

min(Int(C1) + ⌧(C1), Int(C2) + ⌧(C2))

𝜏(C)
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Efficient graph based image segmentation

✦ Important take-away points
✦ [Felzenszwalb and Huttenlocher 2004] is single link agglomerative 

clustering
✦ “Local” termination criteria w.r.t. dendrogram spacing
✦ Monotonic criteria: Once violated, the two clusters won’t be 

merged
✦ Also: Any other monotonic criteria will do
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Efficient graph based video segmentation
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Efficient graph based video segmentation
✦ Applying the “Local” termination criteria to video is problematic 

✦ 𝜏(C) = constant / |C| decreases with region size

✦ For video: 
✦ In video, region volume >> region area for images 
✦ Either increase constant (more segmentation errors) 
✦ Or: Have many small regions

✦ For practical implementations: 
✦ For large homogenous regions:  
⇒ Regions are broken into small pieces 

✦ For textured regions: Additional merges required to achieve minimum region size

⌧(C) ! 0
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Homogenous regions

⌧(C) ! 0
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Results use new merge criteria, not [Felzenszwalb and Huttenlocher 2004] 
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Merge percentages
✦ [Felzenszwalb and Huttenlocher 2004] with forced merges
✦ Regular merges account for less than 1/3 of all merges

Truck 
(homogenous)

8.7
7.2

84.1

Forced
Regular
Small Region

Flowergarden 
(textured)

42.8

28.8

28.3 Forced
Regular
Small Region

forced includes merges due to constraints
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A new merge criteria
✦ Recall: Any monotonic criteria will do 
✦ Need more regular merges, distance that 

accounts for compression levels 
✦ Avoid “chaining” for single link clustering 

(small local edge weights can accumulate) 
✦ Idea: 

✦ Build up local descriptors during merge process 
✦ Use edge and descriptor distance to determine  

 if a merge should be performed 
✦ Incorporate small region merges 
✦ Monotonicity: If merge test fails, label regions as done 

co
st

merge test 
 failed
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Our new merge criteria
✦ Descriptor during merges: 

Mean color / Mean flow (any other possible) 
✦ Merge regions if: 

✦ Edge weight < 1 intensity level and  
descriptor distance < 20% 
(allow for variability but control cutoff) 

✦ Edge weight >= 1 intensity level and  
descriptor distance < 5% intensity range 

✦ One of them is too small 

✦ If violated: Flag as done (monotonicity!) 
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forced includes merges due to constraints
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Merge percentages for new criteria
✦ Regular merges account for more than 80% of all merges! (as 

opposed to less than 1/3 of all merges)
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Hierarchical graph-based segmentation
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Hierarchical graph-based segmentation
✦ Size of regions: Controlled by merge threshold 

between descriptors  (earlier: 𝜏(C))
✦ Consider Hierarchical segmentation, instead 

of tweaking thresholds
✦ Build spatio-temporal adjacency graph of 

regions from over-segmentation
✦ Edge weights based on similarity of region 

descriptors (Appearance, texture, motion)
✦ Segment regions into “super-regions”
✦ Repeat until: Minimum region number reached
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Spatio-Temporal Over-Segmentation

original video over-segmentation
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Hierarchical Segmentation

Hierarchy at 20%Over-segmentation
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Hierarchical Segmentation
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Benefits of hierarchical segmentation

Hierarchical segmentation 
(shown at 50% of height of 

segmentation tree)

Over-segmentation only 
(manually tuned to give similar sized 

regions)

28
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Benefits of hierarchical segmentation
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Benefits of hierarchical segmentation

Hierarchical segmentation
Over-segmentation only 

(manually tuned to give similar sized 
regions)
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Effect of flow as feature

original

flow in hierarchical  
segmentation

no flow

flow in over-segmentation & 
flow in hierarchical 

segmentation
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Results
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Applications of Video Segmentation
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Applications of Video Segmentation
✦ Use for Scene Analysis 

✦ Geometric Context (CVPR 2013)
✦ Objects localization in Videos (ECCV 2013 

Workshop on Web-scale Social Media)

✦ Using RGBD (CVPR 2014)
✦ Radiometric Calibration (ICCP 2013)
✦ Monocular Depth (BMVC 2014)
✦ Extracting Occlusion Layers (WACV 

2015)
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Geometric Context from Video
✦ Hoiem, Efros, Hebert, 

"Geometric Context 
from a Single Image", 
ICCV 2005. 

✦ Hussein, Grundmann, 
Essa, “Geometric 
Context from Video”, 
CVPR 2013.

http://www.cc.gatech.edu/cpl/projects/videogeometriccontext/
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Classification
✦ Boosted decision trees 
✦ 5-Fold cross-validation (63 videos) 
✦ Main Classifier 

✦ Probability for ground, sky, and vertical 

✦ Vertical Classifier 
✦ Probability for solid, porous, and objects 

✦ Homogeneity Classifier 
✦ Quality of a segment (single or mix)
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Depth from Videos Using Geometric Context 
✦ Raza, et al. (2014), 

BMVC 2014 
✦ Use segmentation + 

geometric context  
to “learn” depth
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Pixels to Semantics (YouTube scale)
✦ G. Hartmann, M. 

Grundmann, J. Hoffman, 
D. Tsai, V. Kwatra, O. 
Madani, S. 
Vijayanarasimhan, I. Essa, 
J. Rehg, R. Sukthankar 
“Weakly Supervised 
Learning of Object 
Segmentations from 
Web-Scale Video” ECCV 
Workshop on Web-scale 
Vision and Social Media, 
2012 (Best Paper) 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Video Segmentation with RGBD
✦ Hickson, 

Birchfield, I. Essa, 
and Christensen 
(2014), “Efficient 
Hierarchical 
Graph-Based 
Segmentation of 
RGBD Videos,” 
CVPR 2014 

✦ Use RGBD to 
assist in video 
segmentation. 
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Online Video Segmentation and Annotation

www.videosegmentation.com
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Online video segmentation
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Online video segmentation
✦ Goal: 

✦ Enable researchers / users to segment videos

✦ Initially launched on a single server in 2010 (limited resolution and 
length)

✦ In 2011: videosegmentation.com 
✦ Hosted on two machines with GPUs (for flow) 
✦ No limits on resolution or length (streaming) 
✦ One job at a time (HD video could stall queue for everyone) 
✦ REST API for terminal based usage

✦ Now: 
✦ Build fast, highly parallel cloud solution

46
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Fast online video segmentation
✦ Main ingredients: 

✦ Underlying segmentation algorithm O(n) 
Parallelize over segmentation and hierarchical segmentation 

✦ Streaming segmentation 
✦ Run flow and both segmentations in a parallel pipeline 
✦ Resolution independence
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Fast O(n) segmentation 
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• Use bucket sort:  Discretize edge weight domain into 2-4K buckets (bucket 
sort) 
L1 RGB color distance: 768 values
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Fast O(n) segmentation 

• Use bucket sort:  Discretize edge weight domain into 2-4K buckets (bucket 
sort) 
L1 RGB color distance: 768 values

• Complexity:  O(n)  [no large multipliers,  𝜶(n) < 5 for all practical values of N]
• Spatial and temporal edges are disjoint → Bucket lists: 

✦ For N frames use 2 * N - 1 list of 2K buckets 
✦ Create in parallel via on-demand threads!  31% faster!!
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Fast O(n) segmentation 

• Use bucket sort:  Discretize edge weight domain into 2-4K buckets (bucket 
sort) 
L1 RGB color distance: 768 values

• Complexity:  O(n)  [no large multipliers,  𝜶(n) < 5 for all practical values of N]
• Spatial and temporal edges are disjoint → Bucket lists: 

✦ For N frames use 2 * N - 1 list of 2K buckets 
✦ Create in parallel via on-demand threads!  31% faster!!

✦ For hierarchical segmentation: 
✦ Evaluate region ↔ neighbor edges in parallel 

✦ Hash edges to weights for fast graph construction
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Streaming video segmentation
Video Volume:   frame#  →
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Streaming video segmentation
✦ Clip-based with overlap
✦ Original 

implementation 
modified edge weights
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Streaming video segmentation
✦ Clip-based with overlap
✦ Original 

implementation 
modified edge weights

✦ Modifying edge weights  
is bad! 
✦ Single-link clustering 
✦ Changes order of merges 
✦ If used with Felzenszwalb 

criteria prohibits merges 

Segment 30 frames

Video Volume:   frame#  →

Output result

Constrain graph before 
segmentation using result 

of previous clip 

Edge within a region 
⇒ weight = 0 

Edge across boundary 

⇒ weight = ∞ 
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Segmentation Pipeline

Hierarchical 
Segmentation

Dense 
flow 

computation

Over-
segmentationVideo

Segments 
clips of 30 frames

Buffers extracted features 
Builds graph in parallel

Computing region 
descriptors 

discard frames 

Flow computation on  
 video frame pairs
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Online Video Segmentation and Annotation
✦ End-to-end system for online video segmentation and 

annotation 
✦ www.videosegmentation.com

54

http://www.videosegmentation.com


© 2014  Irfan Essa, Georgia Tech, All Rights Reserved

Online Video Segmentation and Annotation
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Online Video Segmentation and Annotation
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Open Source Video Segmentation System
https://github.com/videosegmentation/video_segment 
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The Video Segmentation Project
✦ Open source implementation of 

everything shown today 
✦ https://github.com/videosegmentation/

video_segment 
✦ BSD license
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The Video Segmentation Project
✦ Open source implementation of 

everything shown today 
✦ https://github.com/videosegmentation/

video_segment 
✦ BSD license

✦ Generic segmentation interfaces 
✦ Over segmentation: 

✦  Define pixel distance 
✦  region descriptors, 
✦  merge thresholds 

✦ Hierarchical segmentation: 
✦  Define region descriptors 
✦  distances
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Summarizing ..
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Summarizing ..
✦ Video Segmentation 

✦ Efficient, Hierarchical, Super-pixel/voxel-
based 

✦ Running as a WebAPI and Source code 
available (videosegmentation.com)  
✦ already in use by some research 

groups 
✦ ideas for future extensions welcome 

✦ Uses for “Video Scene Understanding”

✦ More Info: 
✦ prof.irfanessa.com
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