Temporal Integration of Multiple Silhouette-based Body-part Hypotheses

Vivek Kwatra, Aaron Bobick, Amos Y. Johnson
CPL, GVU Center, College of Computing
Georgia Institute of Technology

Goals

• Estimation of human body-part locations in a video

• Temporal integration framework of an instantaneous labeling technique
Motivation

- Body-part location information can be useful in many ways
 - Tracking
 - Animation
 - Surveillance
- Should be able to do better than instantaneous
- Framework for combining discrete and continuous state information

Instantaneous Estimation: *Ghost*
State and Measurements

- Ghost outputs a measurement of the state
- q_t: Posture State
- x_t: Body-part location State
- h_t: Posture Measurement (Projection Histogram)
- z_t: Body-part location Measurement: Set of labelings $\{z_{t,q}\}$, one for each posture-based heuristic

Probabilistic State Estimation

- State Estimate
 - Expected value of x_t (body-part location)
 - Most likely value of q_t (posture)
- Probability density estimate
 - Filtered: $p(x_t, q_t | z_{1:t}, h_{1:t})$
 - Smoothed: $p(x_t, q_t | z_{1:T}, h_{1:T})$
 \approx Filtered + Back propagation
- Non-gaussian density: mixture of continuous and discrete variables – estimate using CONDENSATION
CONSENSATION

\begin{align*}
 p(x_t \mid z_{1:t}) & \propto p(z_t \mid x_t) \cdot p(x_t \mid z_{1:t-1}) \\
 & = p(z_t \mid x_t) \cdot \int p(x_t \mid x_{t-1}) \cdot p(x_{t-1} \mid z_{1:t-1}) \, dx_{t-1}
\end{align*}

- **Prediction**
 - Posture transition probability = \(\Pr(q_t \mid q_{t-1}) \): heuristically assigned
 - Body-part dynamics = \(p(x_t \mid x_{t-1}) \): velocity predictor
- **Measurement likelihood**
 - Projection histogram likelihood = \(p(h_t \mid q_t) \): truncated gaussian
 - Body-part labelings likelihood = \(p(z_t \mid x_t, q_t) \): truncated gaussian for \(z_{t,q} \), \(q = q_t \): uniform for other labelings
Forward Density Propagation

- Select a sample with probability proportional to its likelihood
- Predict state of sample in next time step

![Diagram](image)

- Compute new measurement likelihood for the sample

Smoothed State Estimation

- Propagate samples until end of sequence
- Trace ancestors of each sample back to the desired time-step

![Diagram](image)

- Compute mean body-part locations and most likely posture from traced samples
Results

Head
Hands

Feet
Posture

Summary

• A framework for temporally integrating an instantaneous body-part labeling method is presented

• Performs density propagation for mixed discrete and continuous states

• The framework is general enough to be applied to other example domains
The End