
Recognizing Multitasked Activities using Stochastic Context-Free Grammar

Darnell Moore Irfan Essa
Texas Instruments Georgia Institute of Technology

Vision Systems / DSP R&D Center GVU Center / College of Computing
Dallas, TX 75243, USA Atlanta, GA 30332-0280, USA

http://www.cc.gatech.edu/cpl/projects/objectspaces/

Abstract

In this paper, we present techniques for characterizing com-
plex, multi-tasked activities that require both exemplars and
models. Exemplars are used to represent object context,
image features, and motion appearances to label domain-
specific events. Then, by representing each event with a
unique symbol, a sequence of interactions can be described
as an ordered symbolic string. A model of stochastic context-
free grammar, which is developed using underlying rules of
an activity, provides the structure for recognizing semanti-
cally meaningful behavior over extended periods. Symbolic
strings are parsed using the Earley-Stolcke algorithm to de-
termine the most likely semantic derivation for recognition.
Parsing substrings allows us to recognize patterns that de-
scribe high-level, complex events taking place over segments
of the video sequence. We introduce new parsing strategies to
enable error detection and recovery in stochastic context-free
grammar and methods of quantifying group and individual
behavior in activities with separable roles. We show through
experiments with a popular card game how high-level narra-
tives of multi-player games as well as identification of player
strategies and behavior can be extracted in real-time using
vision.

1. Introduction & Related Work
Computer vision research has made significant progress in
recent years at recognizing what people are doing. Most of
the work in recognition of human activity has relied on rec-
ognizing a sequence of states using stochastic model-based
approaches. For example, hidden Markov models (HMMs)
have become very popular for recognizing gestures [2, 12],
sign-language [17, 13], and actions [10, 18, 4] (for a detailed
review of these and other significant efforts in this direction,
please review [1, 7]).

However, when it comes to recognizing activities with
some predefined context or inherent semantics, purely prob-
abilistic methods can be limiting unless they are augmented
by additional structure. These activities include parking cars
or dropping off people at the curb (a visual surveillance
task studied by Ivanov and Bobick [8] using stochastic pars-

ing), longer term office and cooking activities (studied by
Moore and Essa [11], using contextual information), airborne
surveillance tasks (studied by Bremond and Medioni [5], us-
ing deterministic structure), observing simple repair tasks
(studies by Brand [3] using interactions as a metric), and
American sign language recognition (studied by Starner and
Pentland [13], using a grammar), to list a few. In most
cases, we find that exemplars are useful for detecting low-
level primitives, while models generally provide the facilities
for high-level recognition.

Our goal in this paper is to recognize separable, multi-
tasked activities. We define multitasked activities as the in-
termittent co-occurrence of events involving multiple people,
objects, and actions, typically over an extended period of
time. By definition, a multitasked activity is composed of
several single-tasked activities. What may not be clear is
whether these events occur independently, interactively, or in
some combination of the two. It is extremely difficult to find
a means of representing isolated and/or collaborative inter-
actions between several people using methods that are robust
to constant improvisation, especially in most longer-term ac-
tivities. To exploit syntax present in many interactions that
are based on rules or well-defined context, we concentrate
on a class of multitasked activities that possesses group sep-
arability. Grammar is then used to explain dependencies be-
tween interactions occurring within separable groups. By us-
ing syntactic models, we can more easily deal with variation
in the occurrence, distribution and transition between events.

As an example, we highlight our approach using a casino
card game that has multiple participants who interact with
each other both independently and dependently over the du-
ration of the game. Although the rules of play are well-
defined, a great deal of variation is permitted. To recognize
these and other such activities, we leverage stochastic mod-
els based on grammar to interpret syntactic structure and use
image-, action-, and context-based exemplars to detect prim-
itives.

Ivanov and Bobick have accomplished complex activity
recognition by combining syntactic pattern recognition with
statistical approaches to recognize activity taking place over
extended sequences [8]. In their work, HMMs are used to

1



propose candidates of low-level temporal features. These
outputs provide the input stream for a Stochastic Context-
Free Grammar (SCFG) parsing mechanism that enforces
longer range temporal constraints, corrects uncertain or mis-
labelled low-level detections, and allows the inclusion of
prior knowledge about the structure of temporal events in a
given domain. Such an application of syntactic information
is not new to vision and has been employed for pattern and
object recognition in still images for many years now. The
use of SCFG instead of CFG is motivated by the fact that the
stochastic-based approach provides a representation to attach
a probability to a particular sequence of events.

We are also using similar SCFG parsing in our work.
However, in our work, we extend the work of Ivanov and
Bobick by introducing new techniques for error detection and
recovery as well as strategies for quantifying participant be-
havior over time. We also experiment with a very challenging
domain of card playing to validate our approach for complex
multitasked activities.

In the next few sections, we attempt to outline briefly the
technical details associated with SCFG (Section 2, a more
detailed review appears in [8]), parsing (Section 3 and 4),
error detection and recovery (Section 5). (A brief descrip-
tion of the SCFG representation and parsing is primarily in-
cluded for completeness of our exposition and to explain our
work. Full details are available from [15, 14].) We conclude
with a discussion of our experiments in the domain of playing
Blackjack (Section 6).

2. Representation using SCFG
To characterize multitasked activities, we need models that
can identify the regularities associated with complex tasks
while also tolerating the dynamics associated with multiple
participants and interactions scattered through time. Gram-
mar is a mechanism that uses a system of rules to gener-
ate semantically meaningful expressions. Its ability to ac-
commodate variation makes it a compelling choice for mod-
eling complex activities, particularly those that are rule-
based, event-driven. This subset represents activities that
are constrained by unambiguous rules and task-related con-
text, which help to identify meaningful behavior when cer-
tain events are detected.

Grammar is not susceptible to some of the limitations
of probabilistic finite state machine representations, like the
HMMs. Finite state machines are appropriate for modeling
a single hypothesis or a series of them in parallel. However,
as variation becomes more pronounced, it becomes exceed-
ingly difficult to collapse additional hypotheses into a single
finite state model. In contrast, the generative process associ-
ated with grammar is non-deterministic, allowing the deriva-
tion of a much longer and elaborate sequence of events [16].
Grammar allows us to use a single, compact representation
for well-understood interactive events that also accommo-

dates the natural generalizations that occur during their per-
formance. However, because grammar is very domain de-
pendent and very difficult to learn without supervision, we
consider manually specified grammar.

Stochastic context-free grammar (SCFG) is an extension
of context-free grammar (CFG) where a probability p is
added to every production rule, i.e.,

X ! � [p]: (1)

We can also express the rule probability p as P (X ! �),
which essentially gives the conditional likelihood of the pro-
duction X ! �. We estimate rule probabilities by calculat-
ing the average production likelihood. The average simply
divides the count, the number of times a rule is applied, de-
noted c(X ! �) for production X ! �, by the count of all
rules with X on the left hand side, i.e.,

P (X ! �) =
c(X ! �)X
�

c(X ! �)
; (2)

where � represents all nonterminals generated by nontermi-
nal X .

SCFGs are superior to non-stochastic context-free gram-
mar because the probability attached to each rule provides
a quantitative basis for ranking and pruning parses as well
as for exploiting dependencies in a language model. While
SCFGs are computationally more demanding than simpler
language models that employ finite-state and n-gram ap-
proaches, they typically perform well using a modest amount
of training data and can also be extended in a straight-forward
fashion by adding production rules and their associated prob-
abilities for each new primitive event [15]. Rule-based activi-
ties, in particular, make good candidates for use with a SCFG
because they can be described using a relatively small lexi-
con of primitive events.

In a SCFG, the probability of the complete derivation of
a string is determined by the product of the rule probabilities
in the derivation. The notion of context-freeness is extended
to include probabilistic conditional independence of the ex-
pansion of a nonterminal from its surrounding context [14].
Our motivation for using stochastic context-free grammar is
to aggregate low-level events detected so that we can con-
struct higher-level models of interaction. See [14] for more
on SCFG.

Symbol Generation (Event Detection): In our earlier
work, we introduced a vision system called VARS that uses
the ObjectSpaces framework for managing prior as well as
newly discovered information about people, objects, and
their interactions. We present this information as image-,
object-, or action-based evidence that is collected into object-
oriented “containers” [9]. Low-level evidence of this nature,
when assessed without regard to task context, indicate very

IEEE CVPR2001, Kauai, Hawaii, USA 2 Workshop on Models vs. Exemplars, Dec. 2001.



little about what is actually happening. However, combining
these measurements with domain-specific heuristics helps to
detect patterns that indicate meaningful events.

For example during Blackjack, VARS provides facilities
for object segmentation and tracking as well as template
matching so that hands can be followed or newly dealt cards
can be detected. Objects newly introduced during play are
classified using previously seen exemplars, i.e., cards can
be distinguished from betting chips using a hierarchical fea-
ture database that weighs image-based attributes and tem-
plates. Since hands are also tracked, it is easy to associate the
new card with the person that placed it. By adding domain-
specific heuristics, we construct detectors for determining
when betting chips are added or removed from the scene.
Where applicable, we also consider an articles’s location rel-
ative to the entire scene as well as in respect to other objects
or people.

When a particular event is observed, its corresponding
symbolic terminal is appended to the end of the activity
string x, which is parsed by the Earley-Stolcke algorithm.
Again, in general terms, for some domain C, we let DC =
fD1; D2; : : :g represent the set of detectors for generating
the set of terminal symbols VT . For convenience, the likeli-
hood of a detected event, i.e., the likelihood of generating the
terminal symbol xi corresponding to detector Di, is given by

PD(xi) = P (Di); (3)

where P (Di) is defined on a case by case basis. By process-
ing an activity sequence in domain C, we use DC to generate
symbolic string x = x1x2; : : : ; xl, where l = jxj).

When parsing is discussed in the next section, we will
show that it is possible to compute the syntactical likelihood
of a sequence of events P (x). Such a likelihood offers a mea-
sure of how much semantic merit a sequence has. Using the
independence assumption guaranteed by the use of context-
free grammar, we can also describe the likelihood of string
formation based on detection alone, i.e.,

PD(x) =
lY

i=1

PD(xi): (4)

Unfortunately, as the length l increases, the overall likelihood
of the string decreases from repeated multiplication of values
less than unity. A better measure of confidence normalizes
the likelihood according to l, which we describe by simply
calculating the sample mean likelihood of the string, i.e.,

~PD(x) =
1

l

lX
i=1

PD(xi): (5)

3. The Earley-Stolcke Parsing
For parsing input strings, we employ the Earley-Stolcke al-
gorithm, a parser originally developed by Jay Earley [6] for

efficient parsing of CFG and later modified by Andreas Stol-
cke [14] to accommodate SCFG. The Earley-Stolcke algo-
rithm uses a top-down parsing approach and context-free pro-
ductions to build strings that are derivable from left to right.
It maintains multiple hypotheses of all possible derivations
that are consistent with the input string up to a certain point.
Scanning input from left to right, the number of hypothe-
ses increases as new options become available or decrease as
ambiguities are resolved.

A set of states, determined by the length of the string, is
created for each symbol in the input. Each state describes
all candidate derivations. The entire set of states forms the
Earley chart. We preserve notation1 introduced by Earley to
represent a state, which is given by

i : kX ! �:� ; (6)

where i is the index of the current position in the input stream
and k is the starting index of the substring given by nonter-
minal X . Nonterminal X contains substring xk : : : xi : : : xl,
where xl is the last terminal of the substring �. When we
are in position i, the substring x0 : : : xi�1 has already been
processed by the parser. State set i represents all of the states
that describe the parsing at this position. There is always one
more state set than input symbols, i.e., set 0 describes the
parser before any input is processed while set l depicts the
parser after all processing.

Parsing Stages: Parsing proceeds iteratively through three
steps: prediction, scanning, and completion. The prediction
step is used to hypothesize the possible continuation of the
input based on the current position in the derived string. We
expand one branch of the derivation tree down to the set of
its leftmost term to predict the next possible input terminal.

During prediction, we create a list of all the states that are
syntactically possible based on prior input. These states pro-
vide the candidate terminal symbols that we can anticipate
at the next position in the input string. The scanning step is
where we read the next input symbol and match it against all
states under consideration. Scanning ensures that the termi-
nal symbols produced in a derivation match the input string.
The scanning step promotes the states for the next iteration.

Given a set of states which have just been confirmed by
scanning, the completion step updates the positions in all
pending derivations throughout the derivation tree. Each
completion corresponds to the end of a particular nontermi-
nal expansion which was initiated by an earlier prediction
step.

States produced by each of these steps are called pre-
dicted, scanned, and completed, respectively. A state is
called complete (not to be confused with completed) if the

1Earley notation uses only one “.” (index point) when defining states.
The reader is encouraged to pay close attention to the location of the index,
which is easily confused with a period.

IEEE CVPR2001, Kauai, Hawaii, USA 3 Workshop on Models vs. Exemplars, Dec. 2001.



substring xj : : : xi has been fully expanded and is syntac-
tically correct (which is written with the dot located in the
rightmost position of the state, i.e., i : jY ! �:). To de-
termine the likelihood of a string at the current index i, the
forward probability � gives the likelihood of selecting the
next state at step i, along with probability of selecting previ-
ous states, i.e., x1 : : : xi�1. The inner probability 
 measures
the likelihood of generating a substring of the input from a
given nonterminal using a particular production. Unlike the
forward probability, which starts from the beginning of the
string, the inner probability starts at position k in the string.

Parsing in Uncertainty: Human error, i.e., , violating rules
of the activity, and mistakes made during symbol generation
can produce activity sentences that are semantically mean-
ingless. Recall PD(xi), which is the probability of the detec-
tors producing symbol xi. We factor in the likelihood of the
input into the parsing mechanism by multiplying PD(xi) by
the forward and inner probabilities during the scanning step,
i.e.,

�
0

= �(i : kX ! �:a�)PD(a) (7)



0

= 
(i : kX ! �:a�)PD(a); (8)

where a is the terminal sampled from the input in state set
i. The revised values for �

0

and 

0

reflect the weight of the
likelihood of competing derivations as well as the certainty
associated with the scanned input symbol.

Selecting the ML Parse: With uncertainty present in the
input, we are not guaranteed to recover a unique parse. Moti-
vated by the use of the Viterbi parsing in the HMM, we apply
a generalization of the Viterbi method for parsing a string x to
retrieve the most likely probability among all possible deriva-
tions for x (in a manner similar to the one proposed by [8]).
In our case, this will give the most likely interactive summary
of events over the duration of the sequence. To compute the
Viterbi parse, each state set must maintain the maximal path
probability leading to it as well as the predecessor states asso-
ciated with that maximum likelihood path. Path probabilities
are recursively multiplied during completion steps using the
inner probabilities as accumulators [14]. By familiar back-
tracking along the maximal predecessor states, the maximum
probability parse can be recovered.

To implement this Viterbi computation, we modify the
parser such that each state computes its Viterbi probability
v. Note that v is propagated similarly to 
, except that dur-
ing completion the summation is replaced by maximization,
such that vi(kX ! �Y:�) is the maximum of all products
vi(jY ! �:)vj(kX ! �:Y �) along paths that lead to the
completed state kX ! �Y:�, i.e.,

vi(kX ! �Y:�) = max
�;�

fvi(jY ! �:)vj(kX ! �:Y �)g:

(9)

Figure 1: Each dealer-player group represents separable (indepen-
dent) roles. Within each group, individual roles are non-separable
(dependent) and share the same grammar.)

The state associated with the maximum is listed as the Viterbi
path predecessor of kX ! �Y:�, i.e.,

kX ! �:Y � = argmax
�;�

fvi(jY ! �:)vj(kX ! �:Y �)g:

(10)
A familiar recursive procedure is required to recover the

maximum likelihood (ML) derivation tree associated with
the Viterbi parse. During the normal parsing operation de-
scribed earlier, state kX ! �:Y � maintains a pointer to the
state jY ! �: that completes it, providing a path for back-
tracking. After arriving in the final state, the ML tree is repro-
duced by visiting predecessor states as identified by pointers.

4. Parsing Separable Activities
We recognize that individuals can have roles that influence
how they interact with objects and other people in a pro-
cess. Activities with separable groups are characterized by
wholly independent interactive relationships between two or
more agents, i.e., multiple speakers, but separate, indepen-
dent conversations. Conversely, non-separable roles occur
when multiple agents take on collaborative, inter-dependent
behavior, i.e., an argument between speakers that talk at the
same time concerning the same topic.

To assess overall task interactions while preserving indi-
vidual behaviors, our approach divides activities into sepa-
rable groups, then develops grammars that describe the non-
separable interactions in each. In the card game of Black-
jack, for example, a player’s conduct is motivated by how
the dealer is expected to behave. While there can be many
players in a single game, each bets against the dealer, inde-
pendent of any other player. Since there is rarely any correla-
tion between player interactions, each player-dealer pair rep-
resents a separable group. Interactions between player and
dealer are non-separable. Consequently, we only need one

IEEE CVPR2001, Kauai, Hawaii, USA 4 Workshop on Models vs. Exemplars, Dec. 2001.



simple grammar to describe interactions in a game with mul-
tiple players (Figure 1). The production rules for this gram-
mar are listed in Table 1. Terminal symbols used in alphabet
VBJ are based on primitive events detected.

While monitoring interactions in the game, we maintain
a separate symbolic string for each person m, where p =
fp1; p2; :::pmg represents all participating players including
the dealer. In our case, the relation between any event and
person is established by two measures: (a) the person in con-
tact with an article, and (b) the “owner” of the article. These
tags are important in Blackjack because they help us asso-
ciate an article with a respective player. Moreover, the tags
remove potential ambiguity that can confuse the parser. In
practice, the first measure is easily established when we de-
tect an overlap between the image regions bounding the hand
and the object. The second measure is largely determined
by a proximity zone, zm = [xl yt xr yb]

T , for each person
which is defined manually when the scene is initialized, then
labeled with the same ID as the respective person. These tags
are attached during the scanning stage when the next state is
added, such that

i+ 1 : kX ! �a:� [�; 
; pj ; o(zm)];

where o(zm) returns the ID pj corresponding to the zone de-
fined by o(zm). During play, we track hand position to es-
tablish ownership of objects (see Figure 2).

By tagging interactions and leveraging separability, we
provide an elegant treatment for evaluating concurrency us-
ing context from both exemplars and models when multiple
participants and objects are involved. Ivanov and Bobick
uses a much more complicated alternative that performs in-
terleaved consistency checks on serialized event during pars-
ing [8]. Since we do not have to modify grammar or tag
labels during parsing, much less complexity is required by
our parser.

Exploiting separability also allows us to assess the proba-
bilistic behavior of individuals in the scene by isolating cer-
tain production rules that occur within a non-separable rela-
tionship. To model a particular behavior, we manually select
a subset of the production rules, i.e., P& 2 P , that provides
a basis for characterizing interactions. We define b& to be a
vector that represents all n production probabilities in subset
P& . We determine b& from training data taken over several
trials, allowing us to establish baseline models of particular
behavior. For example in Blackjack, certain strategies de-
signed to improve the odds of winning are more likely to
be used by a more experienced player versus a novice. In
this case, we identify P (G ! J); P (G ! bfffH) and
P (G ! Hf) as listed in Table 1 as some of the metrics for
determining player skill.

Each person maintains a subset of the production like-
lihoods b̂& (to reflect his/her probability of using certain
rules), which is reset initially to reflect a uniform distri-
bution. In other words, for a nonterminal X that gen-

Figure 2: Blackjack: Cards and betting chips recognized using
image feature templates. The minimum square distance between
hand and object centroid is calculated to determine the last person to
touch an object. The location of the object can also be used as valu-
able context information. This heuristic enables us to label events
like, ”Dealer dealt car to player.” This image from one of our test-
sequences, videos are available from our website.

erates n other strings of terminals and nonterminals, i.e.,
X ! �1j�2j : : : j�n, all respective likelihoods bX =
�1; �2; : : : ; �n are set identically to 1

n
. During separable role

characterization, each individual shares the same initial set of
rule likelihoods bX over P& . Using Equation (2), rule prob-
abilities for each individual are “tuned” via running mean
based on observations of selected productions over the course
of several trials. Comparisons between individually tuned
rule probabilities b̂& and pre-trained models b& can be made
using the mean sum of the square differences or mean square
error (MSE),i.e.,

err(b& � b̂&) =
1

n

nX
i=1

(�i � �̂i)
2: (11)

The MSE is used to measure the pairwise distance so that
the likelihood of a behavior given a model for it can be es-
tablished by

P (b̂& jb&) = 1�

q
err(b& � b̂&): (12)

Tuning grammars based on an individual’s performance, we
can assess player behavior by evaluating production proba-
bilities. This characterization of behavior naturally improves
as the number of trials is increased.

5. Error Detection & Recovery
Errors in the input can generate ungrammatical strings, caus-
ing the parsing algorithm to fail. We provide techniques
for detecting and recovering from failures caused by certain
types of errors. A substitution error occurs when the wrong

IEEE CVPR2001, Kauai, Hawaii, USA 5 Workshop on Models vs. Exemplars, Dec. 2001.



Production Rules Description

S ! AB [1.0] Blackjack! “play game” “determine winner”
A ! CD [1.0] play game! “setup game” “implement strategy”
B ! EF [1.0] determine winner! “evaluate strategy” “cleanup”
C ! HI [1.0] setup game! “place bets” “deal card pairs”
D ! GK [1.0] implement strategy! “player strategy”
E ! LKM [0.6] evaluate strategy! “flip dealer down-card” “dealer hits” “flip player down-card”

! LM [0.4] evaluate strategy! “flip dealer down-card” “flip player down-card”
F ! NO [0.5] cleanup! “settle bet” “recover card”

! ON [0.5] ! “recover card” “settle bet”
G ! J [0.8] player strategy! “Basic Strategy”

! Hf [0.1] ! “Splitting Pair”
! bfffH [0.1] ! “Doubling Down”

H ! l [0.5] place bets Symbol Domain-Specific Events (Terminals)
! lH [0.5] a dealer removed card from house

I ! ffI [0.5] deal card pairs b dealer removed card from player
! ee [0.5] c player removed card from house

J ! f [0.8] Basic strategy d player removed card from player
! fJ [0.2] e dealer added card to house

K ! e [0.6] house hits f dealer dealt card to player
! eK [0.4] g player added card to house

L ! ae [1.0] Dealer downcard h player added card to player
M ! dh [1.0] Player downcard i dealer removed chip
N ! k [0.16] settle bet j player removed chip

! kN [0.16] k dealer pays player chip
! j [0.16] l player bets chip
! jN [0.16]
! i [0.18]
! iN [0.18]

O ! a [0.25] recover card
! aO [0.25]
! b [0.25]
! bO [0.25]

Table 1: SCFG VBJ for Blackjack card game: Production rules, probabilities, and descriptions. Detectable domain-specific events make up
the terminal alphabet VT of VBJ . This grammar generates a language that can describe the role between any deal-player couple.

terminal symbol is generated because the actual event is not
detected as the most likely. Insertion errors take place when
spurious symbols that do not correspond to actual events are
added to the input. Finally, deletion errors represent failures
to detect events that actually occurred.

Because we use domain-specific heuristics to detect low-
level events, substitution and insertion errors are rare. How-
ever, deletion errors are more frequent because our domain-
specific detectors are less robust at identifying events that
deviate significantly from our heuristic models. Ivanov and
Bobick handle substitution and insertion errors by modifying
the grammar so that the parser accepts input that would, oth-
erwise, generate a fatal syntax error [8]. For rule-based ac-
tivities, like card games, any attempt at correcting an error
in this way will compromise the benefit of being able to detect
rule violations. We have a vested interest in determining how,
when, where, and by whom errors occur. At the same time,
we wish to make parsing robust enough to tolerate erroneous
input.

We attempt to recover from parsing failures by taking ad-
vantage of grammatical structure. Although the arrangement
of terminals in the input is non-deterministic, it is constrained
by a priori known rules that we leverage to anticipate future

input. Parsing errors occur in the scanning stage when the
symbol sampled from the input does not match any of the
terminals from the prediction stage. This invariably happens
during a nonterminal expansion. We revisit the prediction
stage during the expansion of nonterminal X , which creates
a list of productions Y ! � that are syntactically consistent
with the expansion, i.e.,

i : kX ! �:Y � [�; 
] ) i : iY ! :� [�
0

; 

0

]:

Every nonterminal Y is also expanded until the next terminal
is predicted, i.e.,

i : iY ! :a� :

Solutions to a parsing failure are motivated by the nature of
the error. We consider the following three scenarios:

� If the failure is caused by an insertion error, we simply
ignore the scanned terminal, and return the state of the
parser to the point prior to scanning. The same pending
expansions for prediction are maintained.

� If the failure is caused by a substitution error, we pro-
mote each pending prediction state as if it were actu-
ally scanned, creating a new path for each hypotheti-
cal terminal. (At this point, these become hypothetical

IEEE CVPR2001, Kauai, Hawaii, USA 6 Workshop on Models vs. Exemplars, Dec. 2001.



(A) (B) (C)
Grammar

S ! AB

A ! aa

! aaA

B ! bc

! bcB

Earley Chart
predicted

0 : 0 ! :S

0 : 0S ! :AB

0 : 0A ! :aa

0 : 0A ! :aaA

scanned “a”
1 : 0A ! a:a

1 : 0A ! a:aA

none completed
predicted

1 : 1A ! a:a

1 : 1A ! a:aA

Insertion Substitution Deletion
scanned “b” scanned “b” scanned “b”

failed, expecting “a” failed, expecting “a” failed, expecting “a”
ignore “b” �scanned “a” �scanned “a”
predicted 2 : 1A ! aa: 2 : 1A ! aa:

1 : 1A ! a:a 2 : 1A ! aa:A 2 : 1A ! aa:A

1 : 1A ! a:aA completed completed
scanned “c” 2 : 1A ! aa: 2 : 1A ! aa:

failed, expecting “a” 2 : 0S ! A:B 2 : 0S ! A:B

TERMINATED predict predict
2 : 2A ! :aa 2 : 2A ! :aa

2 : 2A ! :aaA 2 : 2A ! :aaA

2 : 2B ! :bc 2 : 2A ! :bc

2 : 2B ! :bcB 2 : 2A ! :bcB

scanned “c” �scanned “b” (retry)
failed, expecting “b” 3 : 2A ! b:c

TERMINATED 3 : 2A ! b:cB

none completed
predicted

3 : 3A ! b:c

3 : 3A ! b:cB

scanned “c”
3 : 2A ! b:c

3 : 2A ! b:cB

3 : 2A ! b:cB

Table 2: (A) Consider this simple context-free grammar, which we will use to construct the input sequence aabc : : :. A deletion error
occurs in the detection of events such that the input only contains abc : : : (B) Shows the Earley chart after the first symbol a, is predicted and
successfully scanned. The next scanned symbol, b, will cause parsing to fail under normal conditions since a was the only symbol anticipated
during prediction. (C) Continuation of the Earley Chart shows parser recovery attempts under different error assumptions. Under the insertion
assumption, we ignore b and repeat the last prediction state. Under substitution, we replace b with a and attempt to continue, but eventually
fail when c is scanned (for both assumptions). Under deletion, we assume that we missed the detection of a, so we simulate its scan. This not
only allows us to complete the parse, but suggests the kind of error that may have taken place. �Scan of hypothetical symbol is simulated to
promote parsing step. Associated rule probabilities are ignored here for simplicity.

paths). We proceed with normal parsing, but instead of
maintaining paths that spawn from a single, legitimately
scanned terminal, we accommodate all paths from each
hypothetical terminal appearing as a result of a simu-
lated scan. A hypothetical path is terminated if another
failure occurs in the next real scanning step. The actual
likelihood of the event associated with the hypothetical
terminal PD(a) is recovered, then multiplied to predic-
tion values of � and 
 such that

�
0

= �(i : iY ! :a�)PD(a) (13)



0

= 
(i : iY ! :a�)PD(a); (14)

as before.

� If the failure is caused by a deletion error, again we
promote each pending prediction state and create a sep-
arate path for each hypothetical symbol. We proceed
through the completion stage, then to prediction to gen-
erate the next state terminal. During a simulated scan,
hypothetical paths that are inconsistent with the sym-
bol that caused the first failure are terminated. When

a deletion error is assumed, there is no detection like-
lihood to recover for the missing symbol. We approxi-
mate this likelihood, denoted as ePD(a), using empirical
values that we select by hand, which are influenced by
historical probability values for the detection of symbol
a. Modified forward and inner probabilities in the first
scanning step are given as

�
0

= �(i : iY ! :a�) ePD(a) (15)



0

= 
(i : iY ! :a�) ePD(a); (16)

while those of the second simulated scanning step can
be recovered from the original scan likelihood, i.e.,

�
0

= �(i+ 1 : i+1Y ! :b�)PD(b) (17)



0

= 
(i+ 1 : i+1Y ! :b�)PD(b): (18)

Using these methods, the parser is guaranteed to generate
a syntactically legal interpretation but provides no warranty
of its semantic legitimacy. The parser supplies the framework
with the erroneous symbol and its corresponding likelihood
so that records of potential failures can be attached to the

IEEE CVPR2001, Kauai, Hawaii, USA 7 Workshop on Models vs. Exemplars, Dec. 2001.



Domain- Detect Error Rate (%)
S Specific Events Rate Ins Sub Del

a dlr removed house card 100.0 0.0 0.0 0.0
b dlr removed plyr card 100.0 0.0 0.0 0.0
c plyr removed house cardy 100.0 0.0 0.0 0.0
d plyr removed plyr card 100.0 0.0 0.0 0.0
e dlr add card to house 94.6 0.0 0.0 5.4
f dlr dealt card to plyr 92.2 0.0 0.0 7.8
g plyr add card to housey 100.0 0.0 0.0 0.0
h plyr add card to plyr 89.3 3.6 0.0 7.1
i dlr removed chip 93.7 0.0 0.0 6.3
j plyr removed chip 96.9 0.0 0.0 3.1
k dlr pays plyr chip 96.9 0.0 0.0 3.1
l plyr bet chip 90.5 1.1 1.1 7.4

Table 3: Experiment I: Detection rate of events which make up the
terminal alphabet VT of VBJ . Errors are categorized as insertion,
substitution, and deletion, respectively. yDenotes events with no
significance to legitimate Blackjack play, but can be used to detect
illegal occurrences.

appropriate person. In this way, substrings with bad syntax
can be more closely scrutinized to determine when an illegal
action takes place.

Table 2 illustrates how the parser attempts to recover from
failures using the three error scenarios mentioned above. We
maintain every recovered path, even if multiple tracks (each
representing one of the three error scenarios) are formed from
a single failure. For each of the error scenarios, we elect to
tolerate only two consecutive failures before terminating the
parse of that path. However, our approach can be applied it-
eratively so that more consecutive failures can be tolerated.
A consequence of accepting more failures must be reflected
by increasing the uncertainty in our approximation of PD(a),
denoted as bPD(a). We rely on the exponential to serve as a
penalty function that is applied by multiplication to the his-
torical mean likelihood ePD(a), i.e.,

bPD(a) = e
�n

� ePD(a); (19)

where n is the number of consecutive failures and � is empir-
ically derived.

The algorithmic complexity of tracking multiple paths,
which is a function of the production rules involved, tends
to grow linearly for grammars with small terminal and non-
terminal alphabets but can expand exponentially for larger
grammars or for very long terminal strings. When computa-
tion and memory resources must be delicately managed, we
prune recovered paths that have low overall likelihoods. Un-
like the example provided in Table 2, we can also entertain
hybrid error scenarios in order to generate the most likely
parse, i.e., instead of treating each consecutive error by the
same type of scenario, all three alternatives can be consider
for each bad input symbol.

6. Experimental Results
We provide real examples of our approach in the domain of
the card game, Blackjack. Every rule of the game was used
as a production rule in the grammar with full coverage (re-
call Table 1). All experiments conducted in this section were
implemented using the Vision Action Recognition System
(VARS), which produces results in real-time on a high-end
PC. The environment was controlled to aid in tracking. Each
activity sequence we mention below is a 320�240, color
YUV video sequence of an entire Blackjack game [9]. A
video of this system running is included as 490.mpg (an
MPEG1 video).

Experiment I: Event Detection Accuracy To determine
the accuracy of terminal symbol generators, we use image
features, object-context as well as heuristics to model de-
tectable events. Twenty-eight sequences were used to gener-
ate 700 example events, which were compiled to determine
the detection rate of each detector. Each sequence consisted
of a full game of Blackjack with at least one player. For ex-
ample, a sequence might generate six examples of the event
“player bet a chip,” five examples of “dealer removed player
card,” etc. The overall detection rate for all events is 96.2%.
The error rates for insertion, substitution, and deletion errors
were 0.4%, 0.1%, and 3.4%, respectively (assessed manu-
ally). Table 3 shows the results of this examination.

Experiment II: Error Detection & Recovery As ex-
pected, when a semantically legitimate sequence is presented
to VARS with no insertion, substitution, or deletion errors,
we are able to parse the activity with 100% accuracy. To pro-
vide a more diverse sample of sequences, two testing corpa
were compiled from several minutes of video where Black-
jack was played, primarily with two people (one dealer and
one player). Corpus A contained 28 legitimate sequences
with at least one detection error per sequence (either a dele-
tion, substitution, or insertion error). Corpus B represents a
family of 10 illegitimate sequences with various errors. Se-
quences in Corpus B often contained illegal moves, dealer
mistakes, cheating, etc. With error recovery disabled, only
12 of the 28 sequences (42.9%) in Corpus A could be entirely
parsed without terminating in failure. Of those that could be
parsed, the mean detection rate for 320 events was 70.1%.
The error rates for insertion, substitution, and deletion errors
were 5.8%, 14.5%, and 9.6%, respectively. None of the se-
quences in Corpus B could be entirely parsed.

With error recovery enabled (accepting up to 2 consec-
utive failures), 25 of the 28 sequences (85.7%) from Cor-
pus A could be parsed with 93.8% of all 625 events detected
accurately. Insertion, substitution, and deletion errors were
reduced by 70.5%, 87.3%, 71.9%, respectively. Parsing im-
proved by 40% for Corpus B sequences with error recov-
ery turned on, with an average 85.4% of high-level events

IEEE CVPR2001, Kauai, Hawaii, USA 8 Workshop on Models vs. Exemplars, Dec. 2001.



Detect % Ins Err Sub Err Del Err
S on off on off on off on off

a 98.8 92.5 0.0 0.0 0.0 0.0 1.2 7.5
b 97.8 90.8 0.0 0.0 0.0 0.0 2.2 9.2
c 100.0 80.0 0.0 0.0 0.0 20.0 0.0 0.0
d 100.0 91.7 0.0 0.0 0.0 0.0 0.0 8.3
e 94.0 74.9 1.2 5.0 1.2 7.5 3.6 12.5
f 95.6 70.3 0.0 2.3 0.0 9.2 4.4 18.3
g 100.0 50.0 0.0 0.0 0.0 50.0 0.0 0.0
h 80.0 41.7 4.0 8.3 8.0 33.3 8.0 16.7
i 92.9 88.9 0.0 0.0 0.0 0.0 7.1 11.1
j 96.5 92.7 0.0 0.0 0.0 0.0 3.5 7.3
k 79.0 12.5 10.5 36.5 10.5 43.8 0.0 7.3
l 90.6 55.8 4.7 17.2 2.4 9.8 2.4 17.2

Table 4: Experiment II: Detection and error rates for Corpus A with
error recovery turned on and off. Error recovery improves overall
detection rate by 33.8%.

recognized accurately. This improvement in the parsing rate
is attributable to our ability to recover from insertion errors,
which simply skipped over rule violations encountered dur-
ing the sequence. We assessed that 22.5%, 17.5%, and 60.0%
of errors were caused by insertion, substitution, and deletion
errors, respectively.

To measure the performance of the parser under a vari-
ety of conditions, including consecutive error burst, Corpus
C was developed from 113 simulated terminal strings repre-
senting legal plays with various errors. Using this data, the
probability of detection for each eventPD(a) is estimated us-
ing the average determined in Table 3. Homogeneous error
types present the worst-case system complexity due to con-
tiguous blocks of substitution and deletion errors. Hetero-
geneous error scenarios benefit from the treatment used for
insertion errors, which only need to maintain the same set of
pending states, effectively lowering overall system complex-
ity. We also learn empirically that to recover from an error
burst of length n, we must accept at least n consecutive fail-
ures to recover.

Experiment III: High-level Behavior Assessment We ex-
amined non-separable roles between a player and the dealer
to assess patterns of behavior. The conduct of the dealer is
strictly regulated by the rules of Blackjack, but the player is
permitted to execute a range of different strategies to improve
his/her chance of winning. We define a novice as a player
whose moves are limited to basic strategy2 where experts
employ more advanced strategies, such as “splitting pairs”
and “doubling down.” The profile for these two behaviors is
shown in Figure 3.

We can also assess other behaviors, such as whether a
player is a low-risk or high-risk player by evaluating bet-
ting amounts. After tuning several behaviors with actual and

2When no extra cards are dealt to the player after the initial card pair,
basic strategy is assumed.

Figure 3: Trained behavior profiles of player strategy for novice
and expert.

Behavior Detection Accuracy
Low-risk 92%
High-risk 76%
Novice 100%
Expert 90%

Table 5: Experiment III: Classification of behaviors.

synthetic training data, roughly 10 trials per individual were
conducted to assess behavior. Results are shown in Table 5.

7. Conclusions & Future Work

We show that SCFG is a powerful method for extracting
high-level behaviors from sequences that have multiple peo-
ple, objects, and tasks taking place over an extended period of
time. By monitoring how frequently some production rules
are used, we demonstrate a quantitative technique for assess-
ing behaviors in non-separable roles. Using a strategy that
proposes multiple hypotheses for recovering from errors in
the input, our results show that parsing improves by over 40%
and reduces some errors by as much as 87%. By closely ex-
amining multitasked, collaborative tasks such as card games,
we develop methods that are appropriate for treating other
highly complicated human activities. Our work provides
an endorsement for the use of hybrid model-exemplar ap-
proaches where flexible, SCFG-based models are applied for
high-level recognition and feature-based exemplars for low-
level detection.

Future work will present new strategies on adapting gram-
mar used by rule-based activities to improve the maximum
likelihood parse. This work will demonstrate how intelligent
systems can learn and anticipate a sequence of events by ad-
justing rule probabilities to maximize recognition. We also
plan to investigate automatic approaches to identify different
participant behavior.

IEEE CVPR2001, Kauai, Hawaii, USA 9 Workshop on Models vs. Exemplars, Dec. 2001.



References
[1] J.K. Aggarwal and Q. Cai. Human motion analysis: A review. CVIU, 73(3):428–

440, March 1999.

[2] A. F. Bobick and A. D. Wilson. A state based approach to the representation and
recognition of gesture. PAMI, 19(12):1325–1337, December 1997.

[3] M. Brand. Understanding manipulation in video. In Proceedings of Second In-
ternational Conference on Face and Gesture Recognition, pages 94–99, 1997.

[4] M. Brand, N. Oliver, and A. Pentland. Coupled hidden markov models for com-
plex action recognition. In CVPR, 1997.

[5] F. Bremond and G. Medioni. Scenario recognition in airborne video imagery. In
DARPA Image Understanding Workshop 1998, pages 211–216, 1998.

[6] J. C. Earley. An Efficient Context-Free Parsing Algorithm. PhD thesis, Carnegie-
Mellon University, 1968.

[7] D.M. Gavrila. The visual analysis of human movement: A survey. CVIU,
73(1):82–98, January 1999.

[8] Y.A. Ivanov and A.F. Bobick. Recognition of visual activities and interactions by
stochastic parsing. PAMI, 22(8):852–872, August 2000.

[9] D. Moore. Vision-Based Recognition of Action using Context. PhD thesis, Geor-
gia Institute of Technology, Department of Electrical and Computer Engineering,
2000. Available from http://www.cc.gatech.edu/cpl/pubs/djmoore/PhDthesis.zip.

[10] D. Moore, I. Essa, and M. Hayes. Context management for human activity recog-
nition. In Proceedings of Audio and Vision-based Person Authentication 1999,
1999.

[11] D. Moore, I. Essa, and M. Hayes. Exploiting human actions and object context
for recognition tasks. In ICCV’99, pages 80–86, 1999.

[12] J. Schlenzig, E. Hunter, and R. Jain. Recursive identification of gesture inputs
using hidden markov models. In WACV94, pages 187–194, 1994.

[13] T. Starner, J. Weaver, and A.P. Pentland. Real-time american sign language recog-
nition using desk and wearable computer based video. PAMI, 20(12):1371–1375,
December 1998.

[14] A. Stolcke. Bayesian Learning of Probabilistic Language Models. Ph.d., Univer-
sity of California at Berkeley, 1994.

[15] A. Stolcke and J. Segal. Precise n-gram probabilities from stochastic context-
free grammars. In Proceedings of the 32nd Annual Meeting of the Association
for Computational Linguistics, pages 74–79, June 26-30 1994. Las Cruces, NM.

[16] R. G. Taylor. Models of Computation and Formal Languages. Oxford University
Press, 1998.

[17] C. Vogler and D. Metaxas. A framework for recognizing the simultaneous aspects
of american sign language. CVIU, 81(3):358–384, March 2001.

[18] J. Yamato, J. Ohya, and K. Ishii. Recognizing human action in time-sequential
images using a hidden Markov model. In CVPR1992, pages 379–385, 1994.

IEEE CVPR2001, Kauai, Hawaii, USA 10 Workshop on Models vs. Exemplars, Dec. 2001.


