
Recognizing Multitasked Activities from Video using Stochastic Context-Free Grammar

Darnell Moore
Texas Instruments

Video & Imaging Processing / DSP R&D Center
Dallas, TX 75243, USA

Irfan Essa
Georgia Institute of Technology

GVU Center / College of Computing
Atlanta, GA 30332-0280, USA

Abstract

In this paper, we present techniques for recognizing com-
plex, multitasked activities from video. Visual information
like image features and motion appearances, combined with
domain-specific information, like object context is used ini-
tially to label events. Each action event is represented with
a unique symbol, allowing for a sequence of interactions to
be described as an ordered symbolic string. Then, a model
of stochastic context-free grammar (SCFG), which is devel-
oped using underlying rules of an activity, is used to provide
the structure for recognizing semantically meaningful behav-
ior over extended periods. Symbolic strings are parsed us-
ing the Earley-Stolcke algorithm to determine the most likely
semantic derivation for recognition. Parsing substrings al-
lows us to recognize patterns that describe high-level, com-
plex events taking place over segments of the video sequence.
We introduce new parsing strategies to enable error detection
and recovery in stochastic context-free grammar and meth-
ods of quantifying group and individual behavior in activities
with separable roles. We show through experiments, with a
popular card game, the recognition of high-level narratives
of multi-player games and the identification of player strate-
gies and behavior using computer vision.

Introduction & Related Work
Computer vision research has made significant progress in
recent years at recognizing what people are doing. Most of
the work in recognition of human activity has relied on rec-
ognizing a sequence of states using stochastic model-based
approaches. For example, hidden Markov models (HMMs)
have become very popular for recognizing gestures (Bo-
bick & Wilson 1997; Schlenzig, Hunter, & Jain 1994), sign-
language (Vogler & Metaxas 2001; Starner, Weaver, & Pent-
land 1998), and actions (Moore, Essa, & Hayes 1999a;
Yamato, Ohya, & Ishii 1994; Brand, Oliver, & Pentland
1997).

However, when it comes to recognizing activities with
some predefined context or inherent semantics, purely prob-
abilistic methods can be limiting unless they are augmented
by additional structure. These activities include parking
cars or dropping off people at the curb, (Ivanov and Bo-
bick (2000) recognized using stochastic parsing), longer
term office and cooking activities (Moore and Essa (1999b),

Copyright c� 2002, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

recognized using contextual information), airborne surveil-
lance tasks (Bremond and Medioni (1998), recognized us-
ing deterministic structure), observing simple repair tasks
(Brand (1997), recognized using interactions as a metric),
and American sign language recognition (Starner and Pent-
land (1998), recognized using a grammar).

Our goal in this paper is to recognize separable, multi-
tasked activities. We define multitasked activities as the in-
termittent co-occurrence of events involving multiple people,
objects, and actions, typically over an extended period of
time. By definition, a multitasked activity is composed of
several single-tasked activities. To exploit syntax present
in many interactions that are based on rules or well-defined
context, we concentrate on a class of multitasked activities
that possesses group separability. Grammar is then used to
explain dependencies between interactions occurring within
separable groups. By using syntactic models, we can more
easily deal with variation in the occurrence, distribution and
transition between events.

As an example, we highlight our approach using a casino
card game that has multiple participants who interact with
each other both independently and dependently over the du-
ration of the game. Although the rules of play are well-
defined, a great deal of variation is permitted. To recognize
these and other such activities, we leverage stochastic mod-
els based on grammar to interpret syntactic structure and use
computer vision to image-, detect visual primitives.

Ivanov and Bobick have accomplished complex activity
recognition by combining syntactic pattern recognition with
statistical approaches to recognize activity taking place over
extended sequences (Ivanov & Bobick 2000). In their work,
HMMs are used to propose candidates of low-level tempo-
ral features. These outputs provide the input stream for a
Stochastic Context-Free Grammar (SCFG) parsing mecha-
nism that enforces longer range temporal constraints, cor-
rects uncertain or mislabelled low-level detections, and al-
lows the inclusion of prior knowledge about the structure of
temporal events in a given domain.

The application of syntactic information is not new to AI
and computer vision and having been employed for natu-
ral language processing and for pattern/object recognition in
still images for many years now. The use of SCFG instead
of CFG is motivated by the fact that the stochastic-based ap-
proach provides a representation to attach a probability to a
particular sequence of events. We extend the work of Ivanov



and Bobick by introducing new techniques for error detec-
tion and recovery as well as strategies for quantifying par-
ticipant behavior over time. We also experiment with a very
challenging domain of card playing to validate our approach
for complex multitasked activities.

Representation using SCFG
To characterize multitasked activities, we need models that
can identify the regularities associated with complex tasks
while also tolerating the dynamics associated with multiple
participants and interactions scattered through time. Gram-
mar is a mechanism that uses a system of rules to generate
semantically meaningful expressions. Its ability to accom-
modate variation makes it a compelling choice for model-
ing complex activities, particularly those that are rule-based,
event-driven.

Grammar is not susceptible to some of the limitations of
probabilistic finite state machine representations, like the
HMMs. Finite state machines are appropriate for modeling
a single hypothesis or a series of them in parallel. However,
as variation becomes more pronounced, it becomes exceed-
ingly difficult to collapse additional hypotheses into a single
finite state model. In contrast, the generative process associ-
ated with grammar is non-deterministic, allowing the deriva-
tion of a much longer and elaborate sequence of events (Tay-
lor 1998). Grammar allows us to use a single, compact rep-
resentation for well-understood interactive events that also
accommodates the natural generalizations that occur during
their performance. However, because grammar is very do-
main dependent and very difficult to learn without supervi-
sion, we consider manually specified grammar.

Stochastic context-free grammar (SCFG) is an extension
of context-free grammar (CFG) where a probability p is
added to every production rule, i.e., X � λ We can also ex-
press the rule probability p as P�X � λ�, which essentially
gives the conditional likelihood of the production X � λ. We
estimate rule probabilities by calculating the average produc-
tion likelihood. The average simply divides the count, the
number of times a rule is applied, denoted c�X � λ� for pro-
duction X � λ, by the count of all rules with X on the left
hand side, i.e.,

P�X � λ� �
c�X � λ�

∑
µ

c�X � µ�
� (1)

where µ represents all nonterminals generated by nontermi-
nal X .

SCFGs are superior to non-stochastic context-free gram-
mar because the probability attached to each rule provides
a quantitative basis for ranking and pruning parses as well
as for exploiting dependencies in a language model. While
SCFGs are computationally more demanding than simpler
language models that employ finite-state and n-gram ap-
proaches, they typically perform well using a modest amount
of training data and can also be extended in a straight-
forward fashion by adding production rules and their asso-
ciated probabilities for each new primitive event (Stolcke &
Segal 1994). Rule-based activities, in particular, make good
candidates for use with a SCFG because they can be de-
scribed using a relatively small lexicon of primitive events.

In a SCFG, the probability of the complete derivation of a
string is determined by the product of the rule probabilities
in the derivation. The notion of context-freeness is extended
to include probabilistic conditional independence of the ex-
pansion of a nonterminal from its surrounding context (Stol-
cke 1994). Our motivation for using stochastic context-free
grammar is to aggregate low-level events detected so that we
can construct higher-level models of interaction.
Symbol Generation (Event Detection): To facilitate event
detection, we need to manage prior and newly discovered in-
formation about people objects, and their interactions. Such
information in the form of image-, object-, or action-based
evidence that is collected into object-oriented “containers”
(Moore, Essa, & Hayes 1999a). In the specific example of
BlackJack, a simple vision system is used which allows for
object segmentation and tracking as well as template match-
ing so that hands can be followed or newly dealt cards can be
detected. Hands are also tracked making it easy to associate
the new card with the person that placed it (Figure 1). By
adding domain-specific heuristics, we construct detectors for
determining when betting chips are added or removed from
the scene. Where applicable, we also consider an articles’s
location relative to the entire scene as well as in respect to
other objects or people.

When a particular event is observed, its corresponding
symbolic terminal is appended to the end of the activity
string x, which is parsed by the Earley-Stolcke algorithm.
Again, in general terms, for some domain C , we let DC �
�D1�D2� � � �� represent the set of detectors for generating the
set of terminal symbols VT . For convenience, the likelihood
of a detected event, i.e., the likelihood of generating the ter-
minal symbol xi corresponding to detector Di, is given by
PD�xi� �P�Di�, where P�Di� is defined on a case by case ba-
sis. By processing an activity sequence in domain C , we use
DC to generate symbolic string x � x1x2� � � � �xl , with length,
l � �x�.

When parsing is discussed in the next section, we will
show that it is possible to compute the syntactical likelihood
of a sequence of events P�x�. Such a likelihood offers a mea-
sure of how much semantic merit a sequence has. Using the
independence assumption guaranteed by the use of context-
free grammar, we can also describe the likelihood of string
formation based on detection alone, i.e.,

PD�x� �
l

∏
i�1

PD�xi�� (2)

Unfortunately, as the length l increases, the overall likeli-
hood of the string decreases from repeated multiplication
of values less than unity. A better measure of confidence
normalizes the likelihood according to l, which we describe
by simply calculating the sample mean likelihood of the
string, i.e.,

P̃D�x� �
1
l

l

∑
i�1

PD�xi�� (3)

The Earley-Stolcke Parsing
For parsing input strings, we employ the Earley-Stolcke al-
gorithm (Stolcke 1994; Earley 1968). The Earley-Stolcke al-
gorithm uses a top-down parsing approach and context-free



productions to build strings that are derivable from left to
right. It maintains multiple hypotheses of all possible deriva-
tions that are consistent with the input string up to a certain
point. Scanning input from left to right, the number of hy-
potheses increases as new options become available or de-
crease as ambiguities are resolved.

A set of states, determined by the length of the string, is
created for each symbol in the input. Each state describes
all candidate derivations. The entire set of states forms the
Earley chart. We preserve notation1 introduced by Earley to
represent a state, which is given by

i : kX � λ�µ � (4)

where i is the index of the current position in the input stream
and k is the starting index of the substring given by nontermi-
nal X . Nonterminal X contains substring xk � � �xi � � �xl , where
xl is the last terminal of the substring µ. When we are in po-
sition i, the substring x0 � � �xi�1 has already been processed
by the parser. State set i represents all of the states that de-
scribe the parsing at this position. There is always one more
state set than input symbols, i.e., set 0 describes the parser
before any input is processed while set l depicts the parser
after all processing.
Parsing Stages: Parsing proceeds iteratively through three
steps: prediction, scanning, and completion. The prediction
step is used to hypothesize the possible continuation of the
input based on the current position in the derived string. We
expand one branch of the derivation tree down to the set of
its leftmost term to predict the next possible input terminal.

During prediction, we create a list of all the states that are
syntactically possible based on prior input. These states pro-
vide the candidate terminal symbols that we can anticipate
at the next position in the input string. The scanning step is
where we read the next input symbol and match it against all
states under consideration. Scanning ensures that the termi-
nal symbols produced in a derivation match the input string.
The scanning step promotes the states for the next iteration.

Given a set of states which have just been confirmed by
scanning, the completion step updates the positions in all
pending derivations throughout the derivation tree. Each
completion corresponds to the end of a particular nontermi-
nal expansion which was initiated by an earlier prediction
step.

States produced by each of these steps are called pre-
dicted, scanned, and completed, respectively. A state is
called complete (not to be confused with completed) if the
substring x j � � �xi has been fully expanded and is syntacti-
cally correct (which is written with the dot located in the
rightmost position of the state, i.e., i : jY � ν�). To de-
termine the likelihood of a string at the current index i, the
forward probability α gives the likelihood of selecting the
next state at step i, along with probability of selecting previ-
ous states, i.e., x1 � � �xi�1. The inner probability γ measures
the likelihood of generating a substring of the input from a
given nonterminal using a particular production. Unlike the
forward probability, which starts from the beginning of the
string, the inner probability starts at position k in the string.

1Earley notation uses only one “.” (index point) when defin-
ing states. The reader is encouraged to pay close attention to the
location of the index, which is easily confused with a period.

Parsing in Uncertainty: Human error, i.e., violating rules
of the activity, and mistakes made during symbol generation
can produce activity sentences that are semantically mean-
ingless. Recall PD�xi�, which is the probability of the detec-
tors producing symbol xi. We factor in the likelihood of the
input into the parsing mechanism by multiplying PD�xi� by
the forward and inner probabilities during the scanning step,
i.e.,

α�

� α�i : kX � λ�aµ�PD�a��
γ� � γ�i : kX � λ�aµ�PD�a��

(5)

where a is the terminal sampled from the input in state set
i. The revised values for α�

and γ� reflect the weight of the
likelihood of competing derivations as well as the certainty
associated with the scanned input symbol.
Selecting the ML Parse: With uncertainty present in the in-
put, we are not guaranteed to recover a unique parse. Moti-
vated by the use of the Viterbi parsing in the HMM, we apply
a generalization of the Viterbi method for parsing a string
x to retrieve the most likely probability among all possible
derivations for x (in a manner similar to the one proposed
by Ivanov & Bobick (2000)). In our case, this will give the
most likely interactive summary of events over the duration
of the sequence. To compute the Viterbi parse, each state
set must maintain the maximal path probability leading to it
as well as the predecessor states associated with that maxi-
mum likelihood path. Path probabilities are recursively mul-
tiplied during completion steps using the inner probabilities
as accumulators (Stolcke 1994). By familiar backtracking
along the maximal predecessor states, the maximum proba-
bility parse can be recovered.

To implement this Viterbi computation, we modify the
parser such that each state computes its Viterbi probabil-
ity v. Note that v is propagated similarly to γ, except that
during completion the summation is replaced by maximiza-
tion, such that vi�kX � λY�µ� is the maximum of all products
vi� jY � ν��v j�kX � λ�Yµ� along paths that lead to the com-
pleted state kX � λY�µ, i.e.,

vi�kX � λY�µ� � max
λ�µ
�vi� jY � ν��v j�kX � λ�Yµ���

The state associated with the maximum is listed as the
Viterbi path predecessor of kX � λY�µ, i.e.,

kX � λ�Yµ � argmax
λ�µ
�vi� jY � ν��v j�kX � λ�Yµ���

A familiar recursive procedure is required to recover the
maximum likelihood (ML) derivation tree associated with
the Viterbi parse. During the normal parsing operation de-
scribed earlier, state kX � λ�Yµ maintains a pointer to the
state jY � ν� that completes it, providing a path for back-
tracking. After arriving in the final state, the ML tree is
reproduced by visiting predecessor states as identified by
pointers.

Parsing Separable Activities
We recognize that individuals can have roles that influence
how they interact with objects and other people in a pro-
cess. Activities with separable groups are characterized by
wholly independent interactive relationships between two or



Production Rules Description

S � AB [1.0] Blackjack� “play game” “determine winner”
A � CD [1.0] play game� “setup game” “implement strategy”
B � EF [1.0] determine winner� “eval. strategy” “cleanup”
C � HI [1.0] setup game� “place bets” “deal card pairs”
D � GK [1.0] implement strategy � “player strategy”
E � LKM [0.6] eval. strategy� “dealer down-card” “dealer hits” “player down-card”

� LM [0.4] eval. strategy� “dealer down-card” “player down-card”
F � NO [0.5] cleanup� “settle bet” “recover card”

� ON [0.5] � “recover card” “settle bet”
G � J [0.8] player strategy� “Basic Strategy”

� H f [0.1] � “Splitting Pair”
� b f f f H [0.1] � “Doubling Down”

H � l [0.5] place bets Symbol Domain-Specific Events (Terminals)
� lH [0.5] a dealer removed card from house

I � f f I [0.5] deal card pairs b dealer removed card from player
� ee [0.5] c player removed card from house

J � f [0.8] Basic strategy d player removed card from player
� f J [0.2] e dealer added card to house

K � e [0.6] house hits f dealer dealt card to player
� eK [0.4] g player added card to house

L � ae [1.0] Dealer downcard h player added card to player
M � dh [1.0] Player downcard i dealer removed chip
N � k [0.16] settle bet j player removed chip

� kN [0.16] k dealer pays player chip
� j [0.16] l player bets chip
� jN [0.16]
� i [0.18]
� iN [0.18]

O � a [0.25] recover card
� aO [0.25]
� b [0.25]
� bO [0.25]

Seperable, Independent roles

Vision system tracking the game.

Figure 1: (left) Table showing SCFG VBJ for Blackjack card game: Production rules, probabilities, and descriptions. Detectable domain-specific events make up the terminal
alphabet VT of VBJ . This grammar generates a language that can describe the role between any deal-player couple. (right-top) Each dealer-player group represents separable
(independent) roles. Within each group, individual roles are non-separable (dependent) and share the same grammar. (right-bottom) Cards and betting chips recognized using image
feature templates. The minimum square distance between hand and object centroid is calculated to determine the last person to touch an object. The location of the object can also be
used as valuable context information. This heuristic enables us to label events like, “Dealer dealt car to player.”

more agents, i.e., multiple speakers, but separate, indepen-
dent conversations. Conversely, non-separable roles occur
when multiple agents take on collaborative, inter-dependent
behavior, i.e., an argument between speakers that talk at the
same time concerning the same topic.

To assess overall task interactions while preserving indi-
vidual behaviors, our approach divides activities into sepa-
rable groups, then develops grammars that describe the non-
separable interactions in each. In the card game of Black-
jack, for example, a player’s conduct is motivated by how
the dealer is expected to behave. While there can be many
players in a single game, each bets against the dealer, inde-
pendent of any other player. Since there is rarely any cor-
relation between player interactions, each player-dealer pair
represents a separable group. Interactions between player
and dealer are non-separable. Consequently, we only need
one simple grammar to describe interactions in a game with
multiple players. The production rules for this grammar are
listed in Figure 1. Terminal symbols used in alphabet VBJ are
based on primitive events detected.

While monitoring interactions in the game, we maintain
a separate symbolic string for each person m, where p �
�p1� p2� ���pm� represents all participating players including
the dealer. In our case, the relation between any event and
person is established by two measures: (a) the person in con-
tact with an article, and (b) the “owner” of the article. These
tags are important in Blackjack because they help us asso-
ciate an article with a respective player. Moreover, the tags
remove potential ambiguity that can confuse the parser. In
practice, the first measure is easily established when we de-
tect an overlap between the image regions bounding the hand
and the object. The second measure is largely determined by

a proximity zone, zm � �xl yt xr yb�
T , for each person which

is defined manually when the scene is initialized, then la-
beled with the same ID as the respective person. These tags
are attached during the scanning stage when the next state is
added, such that

i�1 : kX � λa�µ �α�γ� p j �o�zm���

where o�zm� returns the ID p j corresponding to the zone de-
fined by o�zm�. During play, we track hand position to es-
tablish ownership of objects (see Figure 1).

By tagging interactions and leveraging separability, we
provide an elegant treatment for evaluating concurrency us-
ing context from both exemplars and models when multi-
ple participants and objects are involved. Ivanov and Bo-
bick (2000) uses a much more complicated alternative that
performs interleaved consistency checks on serialized event
during parsing. Since we do not have to modify grammar or
tag labels during parsing, much less complexity is required
by our parser.

Exploiting separability also allows us to assess the proba-
bilistic behavior of individuals in the scene by isolating cer-
tain production rules that occur within a non-separable rela-
tionship. To model a particular behavior, we manually select
a subset of the production rules, i.e., Pς � P , that provides
a basis for characterizing interactions. We define bς to be a
vector that represents all n production probabilities in subset
Pς. We determine bς from training data taken over several
trials, allowing us to establish baseline models of particu-
lar behavior. For example in Blackjack, certain strategies
designed to improve the odds of winning are more likely
to be used by a more experienced player versus a novice.
In this case, we identify P�G � J��P�G � b f f f H� and



P�G � H f � as listed in Figure 1 as some of the metrics for
determining player skill.

Each person maintains a subset of the production likeli-
hoods b̂ς (to reflect his/her probability of using certain rules),
which is reset initially to reflect a uniform distribution. In
other words, for a nonterminal X that generates n other
strings of terminals and nonterminals, i.e., X � µ1�µ2� � � � �µn,
all respective likelihoods bX � β1�β2� � � � �βn are set identi-
cally to 1

n . During separable role characterization, each indi-
vidual shares the same initial set of rule likelihoods bX over
Pς. Using Equation (1), rule probabilities for each individ-
ual are “tuned” via running mean based on observations of
selected productions over the course of several trials. Com-
parisons between individually tuned rule probabilities b̂ς and
pre-trained models bς can be made using the mean sum of
the square differences or mean square error (MSE),i.e.,

err�bς� b̂ς� �
1
n

n

∑
i�1

�βi� β̂i�
2
� (6)

The MSE is used to measure the pairwise distance so that
the likelihood of a behavior given a model for it can be es-
tablished by

P�b̂ς�bς� � 1�
�

err�bς� b̂ς�� (7)

Tuning grammars based on an individual’s performance, we
can assess player behavior by evaluating production proba-
bilities. This characterization of behavior naturally improves
as the number of trials is increased.

Error Detection & Recovery
Errors in the input can generate ungrammatical strings, caus-
ing the parsing algorithm to fail. We provide techniques
for detecting and recovering from failures caused by certain
types of errors. A substitution error occurs when the wrong
terminal symbol is generated because the actual event is not
detected as the most likely. Insertion errors take place when
spurious symbols that do not correspond to actual events are
added to the input. Finally, deletion errors represent failures
to detect events that actually occurred.

Because we use domain-specific heuristics to detect low-
level events, substitution and insertion errors are rare. How-
ever, deletion errors are more frequent because our domain-
specific detectors are less robust at identifying events that
deviate significantly from our heuristic models. Ivanov and
Bobick handle substitution and insertion errors by modify-
ing the grammar so that the parser accepts input that would,
otherwise, generate a fatal syntax error (Ivanov & Bobick
2000). For rule-based activities, like card games, any at-
tempt at correcting an error in this way will compromise
the benefit of being able to detect rule violations. We have
a vested interest in determining how, when, where, and by
whom errors occur. At the same time, we wish to make pars-
ing robust enough to tolerate erroneous input.

We attempt to recover from parsing failures by taking ad-
vantage of grammatical structure. Although the arrange-
ment of terminals in the input is non-deterministic, it is con-
strained by a priori known rules that we leverage to antici-
pate future input. Parsing errors occur in the scanning stage

when the symbol sampled from the input does not match any
of the terminals from the prediction stage. This invariably
happens during a nonterminal expansion. We revisit the pre-
diction stage during the expansion of nonterminal X , which
creates a list of productionsY � ν that are syntactically con-
sistent with the expansion, i.e.,

i : kX � λ�Yµ �α�γ� � i : iY � �ν �α
�

�γ
�

��

Every nonterminal Y is also expanded until the next terminal
is predicted, i.e., i : iY � �aξ � Solutions to a parsing failure
are motivated by the nature of the error. We consider the
following three scenarios:
If the failure is caused by an insertion error, we simply
ignore the scanned terminal, and return the state of the parser
to the point prior to scanning. The same pending expansions
for prediction are maintained.
If the failure is caused by a substitution error, we promote
each pending prediction state as if it were actually scanned,
creating a new path for each hypothetical terminal. (At this
point, these become hypothetical paths). We proceed with
normal parsing, but instead of maintaining paths that spawn
from a single, legitimately scanned terminal, we accommo-
date all paths from each hypothetical terminal appearing as a
result of a simulated scan. A hypothetical path is terminated
if another failure occurs in the next real scanning step. The
actual likelihood of the event associated with the hypotheti-
cal terminal PD�a� is recovered, then multiplied to prediction
values of α and γ such that we get,

α�

� α�i : iY � �aξ�PD�a�
γ� � γ�i : iY � �aξ�PD�a��

(8)

If the failure is caused by a deletion error, again we pro-
mote each pending prediction state and create a separate path
for each hypothetical symbol. We proceed through the com-
pletion stage, then to prediction to generate the next state
terminal. During a simulated scan, hypothetical paths that
are inconsistent with the symbol that caused the first failure
are terminated. When a deletion error is assumed, there is no
detection likelihood to recover for the missing symbol. We
approximate this likelihood, denoted as �PD�a�, using empir-
ical values that we select by hand, which are influenced by
historical probability values for the detection of symbol a.
Modified forward and inner probabilities in the first scan-
ning step are given as

α�

� α�i : iY � �aξ��PD�a�
γ� � γ�i : iY � �aξ��PD�a��

(9)

while those of the second simulated scanning step can be
recovered from the original scan likelihood, i.e.,

α�

� α�i�1 : i�1Y � �bξ�PD�b�
γ� � γ�i�1 : i�1Y � �bξ�PD�b��

(10)

Using these methods, the parser is guaranteed to generate
a syntactically legal interpretation but provides no warranty
of its semantic legitimacy. The parser supplies the frame-
work with the erroneous symbol and its corresponding like-
lihood so that records of potential failures can be attached
to the appropriate person. In this way, substrings with bad



(A)
Grammar

S � AB
A � aa

� aaA
B � bc

� bcB

(B)
Earley Chart

predicted
0 : 0 � �S
0 : 0S � �AB
0 : 0A � �aa
0 : 0A � �aaA

scanned “a”
1 : 0A � a�a
1 : 0A � a�aA

none completed
predicted

1 : 1A � a�a
1 : 1A � a�aA

(C)
Insertion Substitution Deletion

scanned “b” scanned “b” scanned “b”
failed, expecting “a” failed, expecting“a” failed, expecting “a”

ignore “b” �scanned “a” �scanned “a”
predicted 2 : 1A � aa� 2 : 1A � aa�

1 : 1A � a�a 2 : 1A � aa�A 2 : 1A � aa�A
1 : 1A � a�aA completed completed

scanned “c” 2 : 1A � aa� 2 : 1A � aa�

failed, expecting “a” 2 : 0S � A�B 2 : 0S � A�B
TERMINATED predict predict

2 : 2A � �aa 2 : 2A � �aa
2 : 2A � �aaA 2 : 2A � �aaA
2 : 2B � �bc 2 : 2A � �bc
2 : 2B � �bcB 2 : 2A � �bcB

scanned “c” �scanned “b” (retry)
failed, expecting “b” 3 : 2A � b�c

TERMINATED 3 : 2A � b�cB
none completed

predicted
3 : 3A � b�c
3 : 3A � b�cB

scanned “c”
3 : 2A � b�c
3 : 2A � b�cB
3 : 2A � b�cB

Figure 2: (A) Consider this simple context-free grammar, which we will use to construct the input sequence aabc � � �. A deletion error occurs in the detection of events such that
the input only contains abc � � � (B) Shows the Earley chart after the first symbol a, is predicted and successfully scanned. The next scanned symbol, b, will cause parsing to fail under
normal conditions since a was the only symbol anticipated during prediction. (C) Continuation of the Earley Chart shows parser recovery attempts under different error assumptions.
Under the insertion assumption, we ignore b and repeat the last prediction state. Under substitution, we replace b with a and attempt to continue, but eventually fail when c is scanned
(for both assumptions). Under deletion, we assume that we missed the detection of a, so we simulate its scan. This not only allows us to complete the parse, but suggests the kind of
error that may have taken place. �Scan of hypothetical symbol is simulated to promote parsing step. Associated rule probabilities are ignored here for simplicity.

syntax can be more closely scrutinized to determine when
an illegal action takes place.

Figure 2 illustrates how the parser attempts to recover
from failures using the three error scenarios mentioned
above. We maintain every recovered path, even if multiple
tracks (each representing one of the three error scenarios) are
formed from a single failure. For each of the error scenarios,
we elect to tolerate only two consecutive failures before ter-
minating the parse of that path. However, our approach can
be applied iteratively so that more consecutive failures can
be tolerated. A consequence of accepting more failures must
be reflected by increasing the uncertainty in our approxima-
tion of PD�a�, denoted as �PD�a�. We rely on the exponential
to serve as a penalty function that is applied by multiplica-
tion to the historical mean likelihood �PD�a�, i.e.,

�PD�a� � e
�n
ρ �PD�a�� (11)

where n is the number of consecutive failures and ρ is em-
pirically derived.

The algorithmic complexity of tracking multiple paths,
which is a function of the production rules involved, tends
to grow linearly for grammars with small terminal and non-
terminal alphabets but can expand exponentially for larger
grammars or for very long terminal strings. When computa-
tion and memory resources must be delicately managed, we
prune recovered paths that have low overall likelihoods. Un-
like the example provided in Figure 2, we can also entertain
hybrid error scenarios in order to generate the most likely
parse, i.e., instead of treating each consecutive error by the
same type of scenario, all three alternatives can be consider
for each bad input symbol.

Experimental Results
We provide real examples of our approach in the domain of
the card game, Blackjack. Every rule of the game was used
as a production rule in the grammar with full coverage (recall

Table 1). A vision system, that ran in real-time, was used
for tracking activities in a controlled environment.
Experiment I: Event Detection Accuracy: Twenty-eight
sequences were used to generate 700 example events, which
were compiled to determine the detection rate of each de-
tector. Each sequence consisted of a full game of Black-
jack with at least one player. For example, a sequence might
generate six examples of the event “player bet a chip,” five
examples of “dealer removed player card,” etc. The overall
detection rate for all events is 96.2%. The error rates for in-
sertion, substitution, and deletion errors were 0.4%, 0.1%,
and 3.4%, respectively (assessed manually). Table 1 shows
the results of this examination.
Experiment II: Error Detection & Recovery: A seman-
tically legitimate sequence was then tried with no insertion,
substitution, or deletion errors, and we are able to parse the
activity with 100% accuracy. To provide a more diverse sam-
ple of sequences, two testing corpa were compiled from sev-
eral minutes of video where Blackjack was played, primarily
with two people (one dealer and one player). Corpus A con-
tained 28 legitimate sequences with at least one detection
error per sequence (either a deletion, substitution, or inser-
tion error). Corpus B represents a family of 10 illegitimate
sequences with various errors. Sequences in Corpus B often
contained illegal moves, dealer mistakes, cheating, etc. Er-
ror recovery disabled, only 12 of the 28 sequences (42.9%)
in Corpus A could be entirely parsed without terminating in
failure. Of those that could be parsed, the mean detection
rate for 320 events was 70.1%. The error rates for inser-
tion, substitution, and deletion errors were 5.8%, 14.5%, and
9.6%, respectively. None of the sequences in Corpus B could
be entirely parsed.

Error recovery enabled (accepting up to 2 consecutive
failures), 25 of the 28 sequences (85.7%) from Corpus A
could be parsed with 93.8% of all 625 events detected ac-
curately. Insertion, substitution, and deletion errors were re-
duced by 70.5%, 87.3%, 71.9%, respectively. Parsing im-



Domain- Detect Error Rate (%)
S Specific Events Rate Ins Sub Del

a dlr removed house card 100.0 0.0 0.0 0.0
b dlr removed plyr card 100.0 0.0 0.0 0.0
c plyr removed house card† 100.0 0.0 0.0 0.0
d plyr removed plyr card 100.0 0.0 0.0 0.0
e dlr add card to house 94.6 0.0 0.0 5.4
f dlr dealt card to plyr 92.2 0.0 0.0 7.8
g plyr add card to house† 100.0 0.0 0.0 0.0
h plyr add card to plyr 89.3 3.6 0.0 7.1
i dlr removed chip 93.7 0.0 0.0 6.3
j plyr removed chip 96.9 0.0 0.0 3.1
k dlr pays plyr chip 96.9 0.0 0.0 3.1
l plyr bet chip 90.5 1.1 1.1 7.4

Table 1: Experiment I: Detection rate of events which make up the terminal alpha-
bet VT of VBJ . Errors are categorized as insertion, substitution, and deletion, respec-
tively. †Denotes events with no significance to legitimate Blackjack play, but can be
used to detect illegal occurrences.

Detect % Ins Err Sub Err Del Err
S on off on off on off on off

a 98.8 92.5 0.0 0.0 0.0 0.0 1.2 7.5
b 97.8 90.8 0.0 0.0 0.0 0.0 2.2 9.2
c 100.0 80.0 0.0 0.0 0.0 20.0 0.0 0.0
d 100.0 91.7 0.0 0.0 0.0 0.0 0.0 8.3
e 94.0 74.9 1.2 5.0 1.2 7.5 3.6 12.5
f 95.6 70.3 0.0 2.3 0.0 9.2 4.4 18.3
g 100.0 50.0 0.0 0.0 0.0 50.0 0.0 0.0
h 80.0 41.7 4.0 8.3 8.0 33.3 8.0 16.7
i 92.9 88.9 0.0 0.0 0.0 0.0 7.1 11.1
j 96.5 92.7 0.0 0.0 0.0 0.0 3.5 7.3
k 79.0 12.5 10.5 36.5 10.5 43.8 0.0 7.3
l 90.6 55.8 4.7 17.2 2.4 9.8 2.4 17.2

Table 2: Experiment II: Detection and error rates for Corpus A with error recovery
turned on and off. Error recovery improves overall detection rate by 33.8%.

proved by 40% for Corpus B sequences with error recovery
turned on, with an average 85.4% of high-level events rec-
ognized accurately. This improvement in the parsing rate
is attributed to recovering from insertion errors, which sim-
ply skipped over rule violations encountered during the se-
quence. We assessed that 22.5%, 17.5%, and 60.0% of errors
were caused by insertion, substitution, and deletion errors,
respectively.

To measure the performance of the parser under a vari-
ety of conditions, including consecutive error burst, Corpus
C was developed from 113 simulated terminal strings repre-
senting legal plays with various errors. Using this data, the
probability of detection for each event PD�a� is estimated us-
ing the average determined in Table 1. Homogeneous error
types present the worst-case system complexity due to con-
tiguous blocks of substitution and deletion errors. Hetero-
geneous error scenarios benefit from the treatment used for
insertion errors, which only need to maintain the same set
of pending states, effectively lowering overall system com-
plexity. We also learn empirically that to recover from an
error burst of length n, we must accept at least n consecutive
failures to recover.
Experiment III: High-level Behavior Assessment: We ex-
amined non-separable roles between a player and the dealer
to assess patterns of behavior. The conduct of the dealer is
strictly regulated by the rules of Blackjack, but the player
is permitted to execute a range of different strategies to im-
prove his/her chance of winning. We define a novice as a
player whose moves are limited to basic strategy2 where ex-
perts employ more advanced strategies, such as “splitting
pairs” and “doubling down.” The profile for these two be-
haviors is shown in Figure 3.

2When no extra cards are dealt to the player after the initial card
pair, basic strategy is assumed.

Behavior Detection
Accuracy

Low-risk 92%
High-risk 76%
Novice 100%
Expert 90%

Figure 3: Experiment III: (left) Trained behavior profiles of player strategy for
novice and expert. (right) Table of Classification of behaviors.

We can also assess other behaviors, such as whether a
player is a low-risk or high-risk player by evaluating bet-
ting amounts. After tuning several behaviors with actual and
synthetic training data, roughly 10 trials per individual were
conducted to assess behavior. Results are shown in Figure 3.

Summary
We show that SCFG is a powerful method for extracting
high-level behaviors from sequences that have multiple peo-
ple, objects, and tasks taking place over an extended period
of time. By monitoring how frequently some production
rules are used, we demonstrate a quantitative technique for
assessing behaviors in non-separable roles. Using a strat-
egy that proposes multiple hypotheses for recovering from
errors in the input, our results show that parsing improves
by over 40% and reduces some errors by as much as 87%.
By closely examining multitasked, collaborative tasks such
as card games, we develop methods that are appropriate for
treating other highly complicated human activities.

References
Bobick, A. F., and Wilson, A. D. 1997. A state based approach to the representation
and recognition of gesture. PAMI 19(12):1325–1337.
Brand, M.; Oliver, N.; and Pentland, A. 1997. Coupled hidden markov models for
complex action recognition. In CVPR.
Brand, M. 1997. Understanding manipulation in video. In Proceedings of Second
International Conference on Face and Gesture Recognition, 94–99.
Bremond, F., and Medioni, G. 1998. Scenario recognition in airborne video imagery.
In DARPA Image Understanding Workshop 1998, 211–216.
Earley, J. C. 1968. An Efficient Context-Free Parsing Algorithm. Ph.D. Dissertation,
Carnegie-Mellon University.
Ivanov, Y., and Bobick, A. 2000. Recognition of visual activities and interactions by
stochastic parsing. PAMI 22(8):852–872.
Moore, D.; Essa, I.; and Hayes, M. 1999a. Context management for human activity
recognition. In Proceedings of Audio and Vision-based Person Authentication 1999.
Moore, D.; Essa, I.; and Hayes, M. 1999b. Exploiting human actions and object
context for recognition tasks. In ICCV’99, 80–86.
Schlenzig, J.; Hunter, E.; and Jain, R. 1994. Recursive identification of gesture
inputs using hidden markov models. In WACV94, 187–194.
Starner, T.; Weaver, J.; and Pentland, A. 1998. Real-time american sign language
recognition using desk and wearable computer based video. PAMI 20(12):1371–
1375.
Stolcke, A., and Segal, J. 1994. Precise n-gram probabilities from stochastic context-
free grammars. In Proceedings of the 32nd Annual Meeting of the Association for
Computational Linguistics, 74–79. Las Cruces, NM.
Stolcke, A. 1994. Bayesian Learning of Probabilistic Language Models. Ph.d.,
University of California at Berkeley.
Taylor, R. G. 1998. Models of Computation and Formal Languages. Oxford Univer-
sity Press.
Vogler, C., and Metaxas, D. 2001. A framework for recognizing the simultaneous
aspects of american sign language. CVIU 81(3):358–384.
Yamato, J.; Ohya, J.; and Ishii, K. 1994. Recognizing human action in time-
sequential images using a hidden Markov model. In CVPR1992, 379–385.


