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Abstract

We present a novel algorithm for automatically applying
constrainable, L1-optimal camera paths to generate stabi-
lized videos by removing undesired motions. Our goal is to
compute camera paths that are composed of constant, lin-
ear and parabolic segments mimicking the camera motions
employed by professional cinematographers. To this end,
our algorithm is based on a linear programming framework
to minimize the first, second, and third derivatives of the re-
sulting camera path. Our method allows for video stabiliza-
tion beyond the conventional filtering of camera paths that
only suppresses high frequency jitter. We incorporate addi-
tional constraints on the path of the camera directly in our
algorithm, allowing for stabilized and retargeted videos.
Our approach accomplishes this without the need of user
interaction or costly 3D reconstruction of the scene, and
works as a post-process for videos from any camera or from
an online source.

1. Introduction

Video stabilization seeks to create stable versions of casu-
ally shot video, ideally relying on cinematography princi-
ples. A casually shot video is usually filmed on a handheld
device, such as a mobile phone or a portable camcorder
with very little stabilization equipment. By contrast, pro-
fessional cinematographers employ a wide variety of sta-
bilization tools, such as tripods, camera dollies and steady-
cams. Most optical stabilization systems only dampen high-
frequency jitter and are unable to remove low-frequency
distortions that occur during handheld panning shots, or
videos shot by a walking person. To overcome this limita-
tion, we propose an algorithm that produces stable versions
of videos by removing undesired motions. Our algorithm
works as a post process and can be applied to videos from
any camera or from an online source without any knowl-
edge of the capturing device or the scene.

In general, post-process video stabilization [10] consists
of the following three main steps: (1) Estimating the origi-
nal (potentially shaky) camera path, (2) Estimating a new

smooth camera path, and (3) Synthesizing the stabilized
video using the estimated smooth camera path.

We address all of the above steps in our work. Our key
contribution is a novel algorithm to compute the optimal
steady camera path. We propose to move a crop window
of fixed aspect ratio along this path; a path optimized to
include salient points and regions, while minimizing an L1-
smoothness constraint based on cinematography principles.
Our technique finds optimal partitions of smooth paths by
breaking the path into segments of either constant, linear, or
parabolic motion. It avoids the superposition of these three
types, resulting in, for instance, a path that is truly static
within a constant segment instead of having small residual
motions. Furthermore, it removes low-frequency bounces,
e.g. those originating from a person walking with a camera.
We pose our optimization as a Linear Program (LP) subject
to various constraints, such as inclusion of the crop window
within the frame rectangle at all times. Consequently, we
do not perform additional motion inpainting [10, 3], which
is potentially subject to artifacts.

Related work: Current stabilization approaches employ
key-point feature tracking and linear motion estimation in
the form of 2D transformations, or use Structure from Mo-
tion (SfM) to estimate the original camera path. From this
original shaky camera path, a new smooth camera path is es-
timated by either smoothing the linear motion models [10]
to suppress high frequency jitter, or fitting linear camera
paths [3] augmented with smooth changes in velocity to
avoid sudden jerks. If SfM is used to estimate the 3D path
of the camera, more sophisticated smoothing and linear fits
for the 3D motion may be employed [8].

To rerender the original video as if it had been shot from
a smooth camera path, one of the simplest and most robust
approaches is to designate a virtual crop window of pre-
defined scale. The update transform between the original
camera path and the smooth camera path is applied to the
crop window, casting the video as if it would have been shot
from the smooth camera path. If the crop window does not
fit within the original frame, undefined out-of-bound areas
may be visible, requiring motion-inpainting [3, 10]. Addi-
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Figure 1: Five stills from our video stabilization with saliency constraints using a face detector. Original frames on top, our face-directed
final result at the bottom. The resulting optimal path is essentially static in y (the up and down motion of camera is completely eliminated)
and composed of linear and parabolic segments in x. Our path centers the object of interest (jumping girl) in the middle of the crop window
(bottom row) without sacrificing smoothness of the path. Please see accompanying video.

tionally, image-based rendering techniques [1] or light-field
rendering (if the video was captured by a camera array [13])
can be used to recast the original video.

While sophisticated methods for 3D camera stabiliza-
tion [8] have been recently proposed, the question of how
the optimal camera path is computed is deferred to the user,
either by designing the optimal path by hand or selecting
a single motion model for the whole video (fixed, linear or
quadratic), which is then fit to the original path. The work
of Gleicher and Liu [3] was the first to our knowledge to
use a cinematography-inspired optimization criteria. Beau-
tifully motivated, the authors propose a system that creates
a camera path using greedy key-frame insertion (based on
a penalty term), with linear interpolation in-between. Their
system supports post-process saliency constraints. Our al-
gorithm approximates the input path by multiple, sparse
motion models in one unified optimization framework in-
cluding saliency, blur and crop window constraints. Re-
cently, Liu et al. [9] introduced a technique that imposes
subspace constraints [5] on feature trajectories when com-
puting the smooth paths. However, their method requires
long feature tracks over multiple frames.

Our proposed optimization is related to L1 trend filtering
[6], which obtains a least square fit, while minimizing the
second derivate in L1 norm, therefore approximating a set
of points with linear path segments. However, our algorithm
is more general, as we also allow for constant and parabolic
paths (via minimizing the first and third derivate). Figure 8
shows that we can achieve L1 trend filtering through a par-
ticular weighting for our objective.

2. L1 Optimal Camera Paths

From a cinematographic standpoint, the most pleasant
viewing experience is conveyed by the use of either static
cameras, panning ones mounted on tripods or cameras
placed onto a dolly. Changes between these shot types can
be obtained by the introduction of a cut or jerk-free transi-
tions, i.e. avoiding sudden changes in acceleration.

We want our computed camera path P (t) to adhere to
these cinematographic characteristics, but choose not to in-
troduce additional cuts beyond the ones already contained
in the original video. To mimic professional footage, we
optimize our paths to be composed of the following path
segments:
• A constant path, representing a static camera,

i.e. DP (t) = 0, D being the differential operator.
• A path of constant velocity, representing a panning or

a dolly shot, i.e. D2P (t) = 0.
• A path of constant acceleration, representing the ease-

in and out transition between static and panning cam-
eras, i.e. D3P (t) = 0.

To obtain the optimal path composed of distinct constant,
linear and parabolic segments, instead of a superposition of
them, we cast our optimization as a constrained L1 min-
imization problem. L1 optimization has the property that
the resulting solution is sparse, i.e. it will attempt to sat-
isfy many of the above properties along the path exactly.
The computed path therefore has derivatives which are ex-
actly zero for most segments. On the other hand, L2 min-
imization will satisfy the above properties on average (in
a least-squared sense), which results in small but non-zero
gradients. Qualitatively, the L2 optimized camera path al-
ways has some small non-zero motion (most likely in the
direction of the camera shake), while our L1 optimized path
is only composed of segments resembling a static camera,
(uniform) linear motion, and constant acceleration.

Our goal is to find a camera path P (t) minimizing the
above objectives while satisfying specific constraints. We
explore a variety of constraints:
Inclusion constraint: A crop window transformed by the

path P (t) should always be contained within the frame
rectangle transformed by C(t), the original camera
path. When modeled as a hard constraint, this allows
us to perform video stabilization and retargeting while
guaranteeing that all pixels within the crop window
contain valid information.

Proximity constraint: The new camera path P (t) should
preserve the original intent of the movie. For example,
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if the original path contained segments with the camera
zooming in, the optimal path should also follow this
motion, but in a smooth manner.

Saliency constraint: Salient points (e.g. obtained by a face
detector or general mode finding in a saliency map)
should be included within all or a specific part of the
crop window transformed by P (t). It is advantageous
to model this as a soft constraint to prevent tracking
of salient points, which in general leads to non-smooth
motion of the non-salient regions.

2.1. Solution via Linear Programming

For the following discussion we assume that the camera
path C(t) of the original video footage has been computed
(e.g. from feature tracks) and is described by a parametric
linear motion model at each instance of time. Specifically,
let the video be a sequence of images I1, I2, . . . , In, where
each frame pair (It−1, It) is associated with a linear motion
model Ft(x) modeling the motion of feature points x from
It to It−1. From now on, we will consider the discretized
camera path Ct defined at each frame It. Ct is iteratively
computed by the matrix multiplication

Ct+1 = CtFt+1 =⇒ Ct = F1F2...Ft. (1)

While we focus our discussion on 2D parametric motion
models Ft, our system is theoretically applicable to higher
dimensional linear motions though we do not explore them
in this paper.

Given the original path Ct, we express the desired
smooth path as

Pt = CtBt, (2)

where Bt = C−1
t Pt is the update transform that when ap-

plied to the original camera path Ct, yields the optimal path
Pt. It can be interpreted as the “stabilization and retargeting
transform” (or crop transform) which is applied to the crop
window centered at each frame to obtain the final stabilized
video. The optimization serves to find the optimal stable
camera path P (t) minimizing the objective

O(P ) = w1|D(P )|1 + w2|D2(P )|1 + w3|D3(P )|1 (3)

subject to multiple previously mentioned constraints. With-
out constraints, the optimal path is constant: Pt = I, ∀t.
1. Minimizing |D(P )|1: Using forward differencing;
|D(P )| =

∑
t |Pt+1 − Pt| =

∑
t |Ct+1Bt+1 − CtBt| us-

ing eq. (2). Applying the decomposition of Ct in eq. (1)

|D(P )| =
∑
t

|CtFt+1Bt+1 − CtBt|

≤
∑
t

|Ct||Ft+1Bt+1 −Bt|.

With Ct known, we therefore seek to minimize the residual∑
t

|Rt|, with Rt := Ft+1Bt+1 −Bt (4)

F2Camera 
path Ct
(known)

Residual
motion

R1 R2

Crop 
window

B1 = C-11 P1 B2 = C-12 P2 B3 = C-13 P3

C1 C2 C3

F3

Figure 2: Camera path. We seek to find the update trans-
form Bt for each frame, such that the L1 norm of the residual
|Rt| = |Ft+1Bt+1−Ft| is minimized for all t (static camera). By
minimizing the difference of the residuals |Rt+1−Rt| as well, we
can achieve a path that is composed of static and linear segments
only. Refer to text for parabolic segments.

over all Bt
1. In fig. 2 we visualize the intuition behind this

residual. A constant path is achieved when applying the
update transformB2 and feature transform F2 in succession
to frame I2 yields the same result as applying B1 to frame
I1, i.e. R1 = 0.
2. Minimizing |D2(P )|1: While forward differenc-
ing gives |D2(P )| =

∑
t |DPt+2 −DPt+1| =∑

t |Pt+2 − 2Pt+1 + Pt|, care has to be taken, as we
model the error as additive instead of compositional. We
therefore minimize directly the difference of the residuals

|Rt+1 −Rt| = |Ft+2Bt+2 − (I + Ft+1)Bt+1 +Bt| (5)

as indicated in fig. 2.
3. Minimizing |D3(P )|1: Similarly,

|Rt+2 − 2Rt+1 +Rt| = (6)
|Ft+3Bt+3 − (I + 2Ft+2)Bt+2 + (2I + Ft+1)Bt+1 −Bt|.

4. Minimizing over Bt: As initially mentioned, the known
frame-pair transforms Ft and the unknown update trans-
forms Bt are represented by linear motion models. For ex-
ample, Ft may be expressed as 6 DOF affine transformation

Ft = A(x; pt) =

(
at bt
ct dt

)(
x1
x2

)
+

(
dxt
dyt

)
with pt being the parametrization vector pt =
(dxt, dyt, at, bt, ct, dt)

T . Similar a 4 DOF linear sim-
ilarity is obtained by setting at = dt and bt = −ct.

We seek to minimize the weighted L1 norm of the resid-
uals derived in eqs. (4) to (6) over all update transforms Bt

parametrized by their corresponding vector pt. Then, the
residual for the constant path segment in eq. (4) becomes

|Rt(p)| = |M(Ft+1)pt+1 − pt|,
1Note, that we chose an additive error here instead of the composi-

tional error min |St| s.t. Ft+1Bt+1 − BtSt = 0, which is better suited
for transformations, but quadratic in the unknowns and requires a costlier
solver than LP.
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where M(Ft+1) is a linear operation representing the ma-
trix multiplication of Ft+1Bt+1 in parameter form.
5. The LP minimizing the L1 norm of the residuals (eqs. (4)
to (6)) in parametric form can be obtained by the introduc-
tion of slack variables. Each residual will require the in-
troduction of N slack variables, where N is the dimension
of the underlying parametrization, e.g. N = 6 in the affine
case. For n frames this corresponds to the introduction of
roughly 3nN slack variables. Specifically, with e being a
vector of N positive slack variables, we bound each resid-
ual from below and above e.g. for |D(P )|:

−e ≤M(Ft+1)pt+1 − pt ≤ e

with e ≥ 0. The objective is to minimize cT e which cor-
responds to the minimization of the L1 norm if c = 1.
By adjusting the weights of c we can steer the minimiza-
tion towards specific parameters, e.g. we can weight the
strictly affine part higher than the translational part. This is
also necessary as translational and affine parts have differ-
ent scales, we therefore use a weighting of 100:1 for affine
to translational parts.

Using the LP formulation of our problem, it easy to im-
pose constraints on the optimal camera path. Recall, that pt
represents the parametrization of the update transform Bt,
which transforms a crop window originally centered in the
frame rectangle. In general, we wish to limit how much Bt

can deviate from the original path to preserve the intent of
the original video2. Therefore, we place strict bounds on the
affine part of the parametrization pt: 0.9 ≤ at, dt ≤ 1.1,
−0.1 ≤ bt, ct ≤ 0.1, −0.05 ≤ bc + ct ≤ 0.05, and
−0.1 ≤ at − dt ≤ 0.1.

The first two constraints limit the range of change in
zoom and rotation, while the latter two give the affine trans-
form more rigidity by limiting the amount of skew and non-
uniform scale. Therefore in each case, we have an upper
(ub) and a lower bound (lb), which can be written as

lb ≤ Upt ≤ ub, (7)

for a suitable linear combination over pt, specified by U .
To satisfy the inclusion constraint, we require that the 4
corners ci = (cxi , c

y
i ), i = 1..4 of the crop rectangle re-

side inside the frame rectangle, transformed by the linear
operation A(pt), as illustrated in fig. 3. In general, it is
feasible to model hard constraints of the form “transformed
point in convex shape” in our framework, e.g. for an affine
parametrization of pt, we require(

0
0

)
≤
(
1 0 cxi cyi 0 0
0 1 0 cxi cyi

)
︸ ︷︷ ︸

:=CRi

pt ≤
(
w
h

)
, (8)

with w and h being the dimensions of the frame rectangle.
2Also for video stabilization extreme choices for scale and rotation

might minimize the residual better but discard a lot of information.
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Figure 4: Optimal camera path obtained via our constrained LP
formulation for the video in fig. 10. Shown is the motion in x and
y over a period of 320 frames, using the inclusion constraint for a
crop window of 75% size of the original frame. Note how the op-
timal path is composed of constant, linear and parabolic arcs. Our
method is able to replace the low-frequency bounce in y (person
walking with a camera) with a static camera while guaranteeing
that all pixels within the crop window are valid.

Crop rectangle

Frame rectangle [0, w] x [0,h]

Corners 
ci trans-
formed 
by A(pt)

Figure 3: Inclusion constraint.

The complete L1
minimization LP for
the optimal camera
path with constraints
is summarized in
Algorithm 1. We show
an example of our
computed optimal path from the original camera path in
fig. 4. Note how the low-frequency bounce in y, originating
from a walking person while filming, can be replaced by a
static camera model.

Algorithm 1: Summarized LP for the optimal camera path.

Input: Frame pair transforms Ft, t = 1..n
Output: Optimal camera path Pt = CtBt = CtA(pt)

Minimize cT e

w.r.t. p = (p1, ..., pn)

where e = (e1, e2, e3), ei = (ei1, ..., e
i
n)

c = (w1, w2, w3)

subject to

smoothness


−e1t ≤ Rt(p) ≤ e1t
−e2t ≤ Rt+1(p)−Rt(p) ≤ e2t
−e3t ≤ Rt+2(p)− 2Rt+1(p) +Rt(p) ≤ e3t
eit ≥ 0

proximity lb ≤ Upt ≤ ub

inclusion (0, 0)T ≤ CRipt ≤ (w, h)T

2.2. Adding saliency constraints

While the above formulation is sufficient for video stabi-
lization, we can perform directed video stabilization, auto-
matically controlled by hard and soft saliency constraints,
using a modified feature-based formulation. Optimizing for
saliency measures imposes additional constraints on the up-
date transform. Specifically, we require that salient points
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G2

Warp 
Transform

Crop 
window 
(fixed)

Feature
transforms 
(known)

W1 W2 W3

Residual
motion

R2 R3

G3

Figure 5: Feature path. Instead of transforming the crop window,
we transform original frame such that the feature movement within
the static crop window is smooth.

reside within the crop window, which is essentially the in-
verse of our inclusion constraint. We therefore consider
optimizing the inverse of the update transform, i.e. a warp
transform Wt applied to set of features in each frame It as
indicated in fig. 5. We denote the inverse of Ft by Gt =
F−1
t . Instead of transforming the crop window by Bt, we

seek a transform Wt of the current features, such that their
motion within a fixed crop window is only composed of
static, linear or parabolic motion. The actual update or sta-
bilization transform is then given byBt =W−1

t . We briefly
derive the corresponding objectives for DiWt, i = 1..3
based on fig. 5:

1. Minimize |DWt|: |Rt| = |Wt+1Gt+1 −Wt|,
2. Minimize |D2Wt|:
|Rt+1 −Rt| = |Wt+2Gt+2 −Wt+1(I +Gt+1) +Wt|,
3. Minimize |D3Wt|: |Rt+2 − 2Rt+1 +Rt| =
|Wt+3Gt+3 −Wt+2(I + 2Gt+2) +Wt+1(2I +Gt+1)−Wt|.

Crop rectangle

0, 0

Salient 
point si 
transformed 
by A(pt)

w,h

cx, cy

by

bx
Figure 6: Canonical coordinate
system for retargeting.

The advantage
of this feature path
formulation lies in the
flexibility it allows
for handling saliency
constraints. Suppose
we want a specific
point (e.g. mode of a
saliency map) or convex region (e.g. from a face detector)
to be contained within the crop window. We denote the set
of salient points in frame It by sti. As we are estimating
the feature warp transform instead of the crop window
transform, we can introduce one-sided3 bounds on sti
transformed by A(pt):(

1 0 sxi syi 0 0
0 1 0 sxi syi

)
pt −

(
bx
by

)
≥
(
−εx
−εy

)
,

with εx, εy ≥ 0. The bounds (bx, by) denote how far (at
least) from the top-left corner should the saliency points lie,

3Compare to two-sided bounds for the inclusion constraint in eq. (8).

as indicated in the inset fig. 6. A similar constraint is intro-
duced for the bottom-right corner. Choosing bx = cx and
cy = by will ensure that the salient points lie within the crop
window. For bx > cx the salient points can be moved to a
specific region of the crop rectangle, e.g. to the center as
demonstrated in fig. 1. Choosing εx, εy = 0 makes it a hard
constraint; however with the disadvantage that it might con-
flict with the inclusion constraint of the frame rectangle and
sacrifice path smoothness. We therefore opt to treat εx, εy
as new slack variables, which are added to the objective of
the LP. The associated weight controls the trade off between
a smooth path and the retargeting constraint. We used a re-
targeting weight of 10 in our experiments.

Crop rectangle

Frame 
corners 
transformed 
by A(pt)

Convex 
constraint 
areas

Figure 7: Inclusion constraint for
the feature path. The transformed
frame corners have to stay within
the convex constraint areas (indi-
cated in orange)

It is clear that the
feature path formula-
tion is more power-
ful than the camera
path formulation, as
it allows retargeting
constraints besides the
proximity and inclu-
sion constraints. How-
ever, the inclusion con-
straint needs to be ad-
justed, as the crop win-
dow points are now
transformed by the inverse of the optimized feature warp
transform, making it a non-linear constraint. A solution is
to require the transformed frame corners to lie within a rect-
angular area around the crop rectangle as indicated in fig. 7,
effectively replacing inclusion and proximity constraints.

An interesting observation is that the estimation of op-
timal feature paths can be achieved directly from feature
points f tk in frame It, i.e. without the need to compute Gt.
In this setting, instead of minimizing the L1 norm of the
parametrized residual R(pt), we directly minimize the L1
norm of feature distances. Rt becomes

|Rt| =
∑

fk:feature matches

|W (pt)f
t
k −W (pt+1)f

t+1
k |

1
.

As Gt is computed to satisfy Gt+1f
t
k = f t+1

k (under some
metric), we note that the previously described optimization
of feature warps Wt from feature transforms Gt essentially
averages the error over all features instead of selecting the
best in an L1 sense. We implemented the estimation of the
optimal path directly from features for reference, but found
it to have little benefit, while being too slow due to its com-
plexity to be usable in practice.

3. Video Stabilization
We perform video stabilization by (1) estimating the per-
frame motion transforms Ft, (2) computing the optimal
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camera path Pt = CtBt as described in section 2, and (3)
stabilizing the video by warping according to Bt.

For motion estimation, we track features using pyramidal
Lucas-Kanade [12]. However, robustness demands good
outlier rejection. For dynamic video analysis, global outlier
rejection is insufficient, whereas the short baseline between
adjacent video frames makes fundamental matrix based out-
lier rejection unstable. Previous efforts resolve this by un-
dertaking 3D reconstruction of the scene via SfM [8], which
is computationally expensive in addition to having stability
issues of its own.

We employ local outlier rejection by discretizing fea-
tures into a grid of 50×50 pixels, applying RANSAC within
each grid cell to estimate a translational model, and only re-
taining those matches that agree with the estimated model
up to a threshold distance (< 2 pixels). We also imple-
mented a real-time version of graph-based segmentation [2]
in order to apply RANSAC to all features within a seg-
mented region (instead of grid cells), which turns out to be
slightly superior. However, we use the grid-based approach
for all our results, as it is approximately 40% faster.

Subsequently, we fit several 2D linear motion mod-
els (translation, similarity and affine) to the tracked fea-
tures. While L2 minimization via normal equation with pre-
normalization performs well in most cases, we noticed in-
stabilities in case of sudden near-total occlusions. We there-
fore perform the fit in L1 norm via the LP solver4, which in-
creases stability in these cases by automatically performing
feature selection. To our knowledge, this is a novel applica-
tion of L1 minimization for camera motion estimation, and
gives surprisingly robust results.

Once the camera path is computed as set of linear mo-
tion models, we fit the optimal camera path according to
our L1 optimization framework subject to proximity and
inclusion constraints as described in section 2. A crucial
question is how to chose the weights w1 − w3 in the objec-
tive eq. (3)? We explore different weightings for a synthetic
path in fig. 8. If only one of the three derivative constraints
is minimized, it is evident that the original path is approxi-
mated by either constant non-continuous paths (fig. 8a), lin-
ear paths with jerks (fig. 8b), or smooth parabolas but al-
ways non-zero motion (fig. 8c). A more pleasant viewing
experience is conveyed by minimizing all three objectives
simultaneously. Though the absolute values of the weights
are not too important, we found eliminating jerks to be most
important, which is achieved whenw3 is chosen to be an or-
der of magnitude larger than both w1 and w2.

The choice of the underlying motion model has a pro-
found effect on the stabilized video. Using affine transforms
instead of similarities has the benefit of two added degrees
of freedom but suffers from errors in skew which leads to ef-
fects of non-rigidity (as observed by [8]). We therefore use

4We use the freely available COIN CLP simplex solver.

0 40 80 120 160

100

200

300

400

y

(a) w1 = 1, w2 = w3 = 0

0 40 80 120 160

100

200

300

400

y

(b) w2 = 1, w1 = w3 = 0

0 40 80 120 160

100

200

300

400

500

y

(c) w3 = 1, w1 = w2 = 0

0 40 80 120 160

100

200

300

400

y

(d) w1 = 10, w2 = 1, w3 = 100

Figure 8: Optimal path (red) for synthetic camera path (blue)
shown for various weights of the objective eq. (3).

similarities to construct our optimal path. However similar-
ities (like affine transforms) are unable to model non-linear
inter-frame motion or rolling shutter effects, resulting in no-
ticeable residual wobble, which we address next.

Residual Motion (Wobble and Rolling Shutter) Sup-
pression: In order to precisely model inter-frame mo-
tion, necessary for complete shake-removal, motion models
with higher DOF than similarities, e.g. homographies, are
needed. However, higher DOF tend of overfit even if out-
lier rejection is employed. Consequently, one can achieve
good registration for a few frames but their composition
starts to quickly become unstable, e.g. homographies start
to suffer from excessive skew and perspective. We suggest
a robust, hybrid approach, initially using similarities (for
frame transforms) Ft := St to construct the optimal cam-
era path, thereby ensuring rigidity over all frames. How-
ever, we apply the rigid camera path, as computed, only
for every k = 30 keyframes. For intermediate frames,

P1

Optimal 
camera 
path Pt

P2 != P1 S2 T2

! = T-13 S-13 P3

P3 = T-14 S-14 P4 P4

Frame transforms Ft:
Similarities St & 
Homographies Ht

S2 
H2 

S3 
H3 

S4 
H4 

Key-Frame Key-Frame

q1
q2

Figure 9: Wobble suppression. The key idea is to decompose the
optimal path Pt into the lower-parametric frame transform St used
as input and a residual Tt (representing the smooth shift added
by the optimization to satisfy the constraints). St is replaced by
a higher parametric model Ht to compute the actual warp. For
consistency, the warp is computed forward (red) from previous and
backward (green) from next key-frame, and the resulting locations
q1 and q2 are blended linearly.
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Figure 10: Reducing rolling shutter by our wobble suppression
technique. Shown are the result for two frames 1/3 second apart.
Top row: Original frames m (left) and m + 1 (right). Middle
row: Stabilization result without wobble suppression. Bottom
Row: Stabilization with wobble suppression. Notice, how wob-
ble suppression successfully removes the remaining skew caused
by rolling shutter. (The yellow traffic sign is tilted in reality.)

we use higher dimensional homographies Ft := Ht to ac-
count for misalignments. As indicated in fig. 9, we de-
compose the difference between two optimal (and rigid)
adjacent camera transforms, P−1

1 P2, into the known es-
timated similarity part S2 and a smooth residual motion
T2, i.e. P−1

1 P2 = S2T2 (T2 = 0 implies static cam-
era). We then replace the low-dimensional similarity S2

with the higher-dimensional homography H2, resulting in
P−1
1 P2 := H2T2. For each intermediate frame, we con-

catenate these replacements starting from its previous and
next keyframes. This effectively results in two sample loca-
tions q1, q2 per pixel (indicated with red and green in fig. 9),
with an average error of around 2 − 5 pixels in our experi-
ments. We use linear blending between these two locations
to determine a per-pixel warp for the frame.

4. Video Retargeting
Video retargeting aims to change the aspect ratio of a
video while preserving salient and visually prominent re-
gions. Recently, a lot of focus has been on “content-aware”
approaches that either warp frames based on a saliency
map [14] or remove and duplicate non-salient seams [11, 4],
both in a temporally coherent manner.

In section 2.2, we showed how we can direct the crop
window to include salient points without having to sacri-
fice smoothness and steadiness of the resulting path. On
the other hand, if the input video is already stable, i.e. C(t)
is smooth, we can explicitly model this property by side-
stepping the estimation of each frame transform Ft, and
force it to the identity transform Ft = I, ∀t. This allows
us to steer the crop window based on saliency and inclu-
sion constraints alone, achieving video retargeting by auto-

matic pan-and-scan. Simply put, video retargeting falls out
as a special case of our saliency based optimization, when
the input video is assumed to be stable. In contrast to the
work by Liu and Gleicher [7], our camera paths are not con-
strained to a single pan, allowing more freedom (e.g. subtle
zoom) and adaptation to complex motion patterns.

While several measures of saliency exist, we primarily
focus on motion-driven saliency. We are motivated by the
assumption that viewers direct their attention towards mov-
ing foreground objects, a reasonable assumption within lim-
itations. Using a fundamental matrix constraint and cluster-
ing on KLT feature tracks, we obtain foreground saliency
features as shown in fig. 12, which are then used as con-
straints, as described in section 2.2.

5. Results
We show some results of video-stabilization using our opti-
mal camera paths on a YouTube “Fan-Cam” video in fig. 11.
Our optimization conveys a viewing experience very close
to professional footage. In fig. 1, we demonstrate the abil-
ity to include saliency constraints, here derived from a face
detector, to frame the dancing girl at the center of result-
ing video without sacrificing smoothness. In the accompa-
nying video, the reader will notice occasional blur caused
by high motion peaks in the original video. Stabilization
techniques pronounce blur, as the stabilized result does not
agree with the perceived (blurred) motion. In the video we
show our implementation of Matsushita et al.’s [10] blur re-
moval technique; however, the blur is too pronounced and
the technique, suffering from temporal inconsistencies, per-
forms poorly. However, our framework allows for the intro-
duction of motion constraints, i.e. after determining which
frames are blurred, we can force the optimal camera path
to agree with the motion of the blur. This effectively re-
duces the perceived blur while still maintaing smooth (but
accelerated) camera motion.

We demonstrate the ability to reduce rolling shutter in
fig. 10; notice how the skew of the house is removed. Us-
ing motion based saliency constraints we can perform video
retargeting using a form of automated pan-and-scan in our
framework; see fig. 12 for an example. While we effectively
crop the frame, our technique is extremely robust, avoiding
spatial and temporal artifacts caused by other approaches.

As dynamics are impossible to judge from images, we
would encourage the reader to watch the accompanying
video. We evaluate our approach on wide variety of videos,
comparing our video stabilization to both current methods
of Liu et al. [8, 9]. We also include an example comparing
the light field approach of Brandon et al. [13]. For video re-
targeting, we show more examples and compare to [11, 14].

Our technique is based on per-frame feature tracks only,
without the need of costly 3D reconstruction of the scene.
We use robust and iterative estimation of motion models
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Figure 11: Example from YouTube “Fan-Cam” video. Top row: Stabilized result, bottom row: Original with optimal crop window. Our
system is able remove jitter as well as low-frequency bounces. Our L1 optimal camera path conveys a viewing experience that is much
closer to a professional broadcast than a casual video. Please see video.

Figure 12: Example of video retargeting using our optimization
framework. Top row: Original frame (left) and our motion aware
saliency (right). Foreground tracks are indicated by red, the de-
rived saliency points used in the optimization by black circles.
Bottom row: Our result (left), Wang et al.’s [14] result (middle)
and Rubinstein et al.’s [11] result (right).

(from lower to higher dimensional), only using inliers from
the previous stage. Our technique is fast; we achieve 20 fps
on low-resolution video, while wobble suppression requires
grid-based warping and adds a little more overhead. Our
unoptimized motion saliency runs at around 10 fps.

6. Conclusion, Limitations, and Future Work

We have proposed a novel solution for video stabiliza-
tion and retargeting, based on computing camera paths di-
rected by a variety of automatically derived constraints. We
achieve state-of-the-art results in video stabilization, while
being computational cheaper and applicable to a wider va-
riety of videos. Our L1 optimization based approach ad-
mits multiple simultaneous constraints, allowing stabiliza-
tion and retargeting to be addressed in a unified framework.
A stabilizer based on our algorithm, with real-time pre-
views, is freely available at youtube.com/editor.

Our technique may not be able to stabilize all videos,
e.g. low feature count, excessive blur during extremely fast
motions, or lack of rigid objects in the scene might make
camera path estimation unreliable. Employing heuristics to
detect these unreliable segments, we reset the correspond-
ing linear motion models Ft to the identity transform, ef-

fectively falling back to the shaky video. Further, the use of
cropping discards information, something a viewer might
dislike. Our computed path is optimal for a given crop win-
dow size, which is the only input required for our algorithm.
In future work, we wish to address automatic computation
of the optimal crop size, as currently we leave this as a
choice to the user.
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