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Abstract

We present an algorithm for finding temporally consis-
tent occlusion boundaries in videos to support segmenta-
tion of dynamic scenes. We learn occlusion boundaries in a
pairwise Markov random field (MRF) framework. We first
estimate the probability of an spatio-temporal edge being
an occlusion boundary by using appearance, flow, and geo-
metric features. Next, we enforce occlusion boundary conti-
nuity in a MRF model by learning pairwise occlusion prob-
abilities using a random forest. Then, we temporally smooth
boundaries to remove temporal inconsistencies in occlusion
boundary estimation. Our proposed framework provides an
efficient approach for finding temporally consistent occlu-
sion boundaries in video by utilizing causality, redundancy
in videos, and semantic layout of the scene. We have de-
veloped a dataset with fully annotated ground-truth occlu-
sion boundaries of over 30 videos (∼5000 frames). This
dataset is used to evaluate temporal occlusion boundaries
and provides a much needed baseline for future studies. We
perform experiments to demonstrate the role of scene lay-
out, and temporal information for occlusion reasoning in
dynamic scenes.

1. Introduction

Objects in a scene exhibit occlusion due to their depth or-
dering with respect to the camera. In video, occlusion
relationships can change over time due to ego-motion or
movement of the objects themselves. In both cases, edges
of the objects give occlusion boundaries. These occlusion
boundaries are a strong indicator of object segmentations.
Hoiem et al.[11] showed that by reasoning about occlu-
sions, object segmentation, recognition, and scene descrip-
tion in images can be improved. To locate these edges, some

  

Figure 1. Video frames of an urban scene, occlusion and non-
occlusion boundaries are labeled as red and blue, respectively. We
demonstrate importance of geometric features and temporal redun-
dancy for finding temporally consistent occlusion boundaries.

initial estimates of motion and segmentations are required,
but typical algorithms tend to fail close to these boundaries
due to depth inconsistency. In this paper, we estimate these
occlusion boundaries by combining low level appearance
and flow cues with higher level information like geometric
scene labels. These estimates of boundaries provide signif-
icant improvements to spatio-temporal video segmentation.

Our algorithm learns temporally consistent occlusion
boundaries in dynamic scenes by leveraging spatio-
temporal segmentation of videos. We first segment a
video into spatio-temporal super-voxels [8, 26]. Over-
segmentation provides a large number of candidate bound-
aries for learning occlusion/non-occlusion boundaries. We
extract a broad range of features from each segment’s
boundary, and train unary and pairwise boundary classifier
and enforce occlusion boundary continuity in MRF. MRF
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enables us to encode pairwise edgelet relations into our
model, i.e., probability of an occlusion boundary to be con-
nected to other occlusion and non-occlusion boundaries, re-
ducing false positives. We also demonstrate that aggregat-
ing information about occlusion boundaries over a temporal
window increases performance when compared to a frame
by frame approach. For testing and evaluations, we have
developed a large dataset consisting of outdoor videos, an-
notated with occlusion boundaries.

Our primary contributions are: (1) a method for esti-
mating temporally consistent occlusion boundaries by com-
bining appearance, flow, and semantic scene information
in an MRF framework; (2) a thorough evaluation of our
algorithm by examining feature importance in estimating
occlusion boundaries and comparison with other occlusion
boundary algorithms (see ??); (3) in addition, we introduce
a novel dataset of 30 annotated videos (∼5,000 frames) with
temporal occlusion boundaries and semantic information,
as existing datasets do not provide temporal and semantic
annotations.

2. Related Research
Geometric layout and temporal consistency in a dynamic

scene provide strong cues for scene understanding and ob-
ject segmentation. Hoiem et al.[11] demonstrated impor-
tance of geometric features for occlusion detection for im-
ages. Saxena et al.[20] proposed a planar model for estimat-
ing 3D structure of the scene from a single image. Applying
image-based methods to individual video frames can pro-
vide occlusion reasoning of the dynamic scene. However,
such image-based methods may not exploit the temporal in-
formation across frames, leading to temporally inconsistent
scene description.

Detecting occlusion boundaries is a well studied prob-
lem, due to its usefulness in understanding the depth, mo-
tion and context of the scene [22, 12]. Fleet et al. [6] gave a
Bayesian formulation where boundaries resulted from dis-
tinguishing local image motion. Stein et al. [22] has shown
that combining appearance and motion cues improves oc-
clusion boundary detection. They further improve occlu-
sion boundary detection by applying a global conditional
random field where the potentials are learned from Ad-
aBoost. He et al.[9] showed that a global model may not
be necessary for sequences with ego-motion and achieved
comparable results by local edge and psuedo-depth maps.
Recently, Sundberg et al. [23] improved over these bound-
aries by computing motion gradients across static bound-
aries. Since these methods rely on local features they are
unable to reduce false positives where intra-object local mo-
tion or appearance variance is high. Typical examples in-
clude waves in the water or trees in the wind. In our method,
semantic/geometric labels help suppress such errors.

Other methods have also been proposed to detect occlu-

sion boundaries in a single image. Many methods infer-
ring geometric labels initially estimate boundaries in single
images [20, 19, 7]. Probabilistic boundary detectors like
Pb [16] use local oriented energy, color, and texture gradi-
ents. Arbeláez et al. [1] improve boundary detection by im-
posing global constraints via spectral clustering which re-
sults in closed contours. Leordeanu et al. [14] proposed Gb,
which reduces the time for generalized boundary detection
by efficient computing boundary normals. In the last year,
probabilistic boundaries have become feasible to use for re-
altime applications. The first method that deserves mention
is Sketch Tokens [15], which classifies edge patches using a
random forest. Following this work, Dollár and Zitnick [5]
introduced a realtime structure learning method for edge de-
tection. From our point of view, both of these methods make
many leaps forward in the single image boundary detection
problem. Yet, extending these methods to videos is a non-
trivial challenge. In this paper we compare to both Sketch
Tokens, and the single-scale (SE-SS T4). and multi-scale
(SE-MS T4) version of Structured Edges. Unlike previous
methods, we use geometric or semantic labels over video
segmentation for finding temporal consistent boundaries in
videos.

In this paper, we leverage video segmentation to find
temporally consistent boundaries in dynamic scenes. We
use flow, and geometric features for estimating each
edgelet’s occlusion probability, and then enforce bound-
ary continuity in a pairwise MRF framework. We demon-
strate the importance of temporal smoothing and geomet-
ric features in occlusion boundary estimation. To verify
our claims, we developed a comprehensive video occlusion
boundary ground truth dataset with a broad set of examples.

3. Dataset and Annotation
Existing Datasets: A comprehensive dataset is necessary
for evaluation of temporal occlusion boundary detection
in dynamic scenes. However, existing datasets are lim-
ited to ground truth annotation for intermittent frames in
a sequence [3], and not all include semantic information.
This poses a hurdle in the study of the role of the scene
structure, and temporal dynamics for occlusion reasoning.
Two widely used datasets for occlusion detection in videos
are proposed by Stein et al. [22] and Sundberg et al. [23].
These datasets are limited in their scope as (1) they pro-
vide ground-truth for only a single frame; (2) they are not
suitable for the study of the role of the scene layout in oc-
clusion reasoning and were not developed for that purpose.
Butler et al. [4] developed MPI-Sintel flow dataset which
contains motion boundaries but does not include the occlu-
sion boundaries in static background. The only dataset with
semantic labels, and occlusion boundaries was proposed by
Hoiem et al. [11]. They proposed a dataset of 50 images
with ground truth annotation of outdoor scenes with occlu-
sion boundaries, surface layout, and depth order. Since this
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Figure 2. Video segmentation from Xu et al. [26] at the top row
and from Grundmann et al. [8] at the bottom row. We selected the
over-segmentation (hierarchy level=0) from Grundmann et al. [8]
because of its performance in preserving occlusion boundaries and
longer temporal coherence over our challenging dataset.

dataset contains only a single image for a scene, it is also
not ideal for our study. To overcome this limitation, we have
developed a comprehensive dataset with temporal occlusion
boundaries and semantic annotations.
A Video Dataset for Occlusion Reasoning: Our dataset
consists of 30 outdoor videos of urban scenes. Some videos
were recorded while walking, some while driving, and oth-
ers were downloaded from YouTube. We also included
few videos from recently released video geometric con-
text dataset from Raza et al.[17]. The videos contain sky,
ground, roads, pavements, rivers, buildings, trees, humans,
and cars. Annotating temporal occlusion boundaries is a
challenging task and there has been no such dataset until
now. We annotate temporal occlusion boundaries in videos
by using video segmentation, similar to the approach by
Hoiem et al.to annotate image dataset using super-pixels
[11]. Recently, two video segmentation algorithms have
been proposed [8, 26]. Both these algorithms provide a hier-
archy of segments from a video. We show a video and seg-
mentation hierarchy output of these algorithms in ??. The
algorithm by Xu et al.gives a high number of super-voxels
with very short temporal life, while the output from Grund-
mann et al.gives less super-voxels with longer temporal life
as well as preserving the occlusion boundaries. We there-
fore selected the video segmentation algorithm proposed by
Grundmann et al.[8] to annotate temporal occlusion bound-
aries.

We use [17, 8] to annotate the video 1. We group together
the spatio-temporal super-voxels that belong to individual
objects, as well as geometric class labels. Geometric classes
annotated in our dataset are sky, ground (roads, pavements,
grass, rivers), planer surfaces (buildings and rocks), porous
(trees and foliage), and movable objects (humans, cars, and
trains). Boundaries between individual objects and geomet-
ric classes provide occlusion boundaries. We show the pro-
cess of our manual occlusion boundary annotation in ??. In
very few cases, the segmentation algorithm fails to segment
a region due to similarity in color or poor-lighting condition.
These boundaries are not annotated in our dataset but such
cases are only a small fraction of the whole dataset. The
proposed dataset contains 5,042 annotated frames across 30

1www.videosegmentation.com

  

(a) Frames (b) Over-segmentation (d) Ground Truth(c) Manual Annotation

Figure 3. Occlusion boundary annotation: (a) an input video, (b)
spatio-temporal super-voxels, (c) we cluster super-voxels into se-
mantic classes and objects, (d) boundaries between these semantic
classes and objects give occlusion boundaries.

Name Image/Video Ground-truth frames Semantic Labels

CMU Geometric Context [11] Image 50 Yes
CMU Occlusion [21] Video 30 No
BSDS [23] Video 60 No
Ours Video 5042 Yes

Table 1. Comparison with existing datasets providing ground truth
for occlusion boundaries. Our dataset contains 5042 frame across
30 videos with annotations for occlusion boundaries, and geomet-
ric class labels.

videos. ?? provides a comparison of our dataset with exist-
ing datasets.

4. Approach
We provide an overview of our proposed method as shown
in ??. We begin by over-segmenting the video into spatio-
temporal super-voxels. Then, for each neighboring region
pair, we extract features to characterize the edgelet between
those regions. In particular, we leverage geometric con-
text features to consider the semantic layout in occlusion
boundary detection. First, we train a binary classifier to es-
timate the probability for an edgelet to lie on an occlusion
boundary. Next, we enforce occlusion boundary continuity
in MRF model by using pairwise edgelet occlusion bound-
ary probability learned by a separate classifier. Finally, we
perform temporal smoothing of these estimated occlusion
probabilities by aggregating them across successive frames.
We perform detailed experiments to show the importance
of geometric context features and temporal smoothing for
predicting occlusion boundaries in videos. In the following,
we describe each step of our algorithm in detail.

4.1. Video Segmentation
We build our algorithm on the initial boundaries pro-

vided by video over-segmentation. The purpose of using
video segmentation is to find spatio-temporal regions which
are coherent in appearance and motion. We use the video
segmentation algorithm (and the related online system) pro-
posed by Grundmann et al.[8] and its extensions [25]. There
method’s over-segmentation gives a large number of spatio-
temporal super-voxels, which we use as initial candidates
for occlusion boundaries. Classifying occlusions on over-
segmentation boundaries has following advantages: (1) pro-
vides good candidate locations for occlusion detection; (2)
it reduces the complexity of the algorithm by not having
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Figure 4. Overview of our method. We learn occlusion boundaries
in a pairwise edgelet MRF framework using unary and continuity
occlusion boundary probabilities using edgelet, flow, and geomet-
ric features. Then we temporally aggregate the frame by frame
predictions to remove inconsistent boundaries.

to classify individual pixels; (3) by working with super-
voxels we can enforces temporal coherence or occlusion
boundaries; (4) helps in exploiting temporal redundancy
and causality for efficient video processing. Next we de-
velop models for learning occlusion boundaries using these
candidate boundaries.
4.2. Features for Occlusion Boundary Prediction

To train classifiers for occlusion boundary prediction, we
compute a variety of features. Features are computed on
every frame for each edgelet, i.e., boundary between two
regions. An edgelet might span more than one frame, in
which case it will contribute to the training data multiple
times. For each edgelet, we compute features based on
boundary, regions, flow, and geometric context. These fea-
tures are explained next.

Boundary and Region Based Features Segmentation
boundaries provide good candidate locations for finding oc-
clusion boundaries. Longer boundaries with strong color
gradients are more likely to be occlusion boundaries as
compared to weak short boundaries, we compute bound-
ary length and smoothness for each edgelet, as suggested
by [11]. In addition to the boundary features, we also in-
clude the color difference of the regions surrounding the
edgelet.

Optical-flow/Motion Based Features Motion estimates
may have inconsistencies at the occlusion boundaries due
to parallax. To capture this information in our frame-
work we compute optical flow based features at each
edgelet. We compute optical flow using the total varia-
tion method proposed by Wedel et al.[24]. Flow algorithms
have photo-consistency assumption. Therefore, pixels ad-
vected from reference frame It by estimated flow Ft→t+1

should correspond to the next frame It+1. This assumption
breaks down at occlusion boundaries, hence high photo-
consistency residual should be indicative of such bound-
aries [12, 13]. Residual photo-consistency feature FPC is

computed as

FPC(x) = |It(x)− It+1(x+ Ft→t+1(x))| . (1)

If the motion of two interacting objects is different, their
occlusion boundary will have flow discontinuities. To in-
clude flow discontinuities, we compute the flow gradient
given by

FTG,x = ‖ 5 ux‖, FTG,y = ‖ 5 vy‖. (2)

Since flow gradient is only computed over two pixels, it
is unable to capture statistics over a larger area. To capture
these proximal flow discontinuities, we compute the vari-
ance of the magnitude of flow F−→mag = ‖Ft→t+1‖ in a spatial
window around a pixel given as

Fmag(x) = E
[(
F−→mag(xi)−E

[
F−→mag(x)

])2]
, (3)

where xi are the pixels in the 3× 3 window around pixel x
and E(·) is the expectation function. Another way to check
inconsistency in flow is to advect pixels by flow Ft→t+1 and
follow them back by flow Ft+1→t, i.e., flow computed from
It+1 to It. If the pixel was not occluded or dis-occluded,
i.e., it was far from an occlusion boundary, an accurate flow
estimate should bring the pixel back to its starting location
in frame It. We use the `2 distance from the starting loca-
tion as a reverse flow constancy feature,

FRC = ‖x− (x′F + Ft+1→t(x
′
F )) ‖, (4)

where x′F = round(x + Ft+1→t(x)). We can similarly
note the inconsistency in the forward and reverse flow an-
gle. Ft→t+1 and Ft+1→t are said to be consistent if they
are 180◦ apart. Any deviation from this is used as a reverse
flow angle consistency feature, which is computed as,

FRC,θ =

∣∣∣∣π − arccos

[
Ft→t+1(x) · Ft+1→t(x

′
F )

F−→mag(x)F←−mag(x
′
F )

]∣∣∣∣ , (5)

where F←−mag = ‖Ft+1→t‖ is the magnitude of the reverse
optical flow.

Geometric Layout Features Geometric layout estimate
provides strong cues for occlusion boundaries and have
been shown to be useful for occlusion reasoning and scene
understanding [10]. For example, an occlusion boundary
should exist between different geometric classes, such as,
between sky and vertical class(buildings, trees, etc). To in-
clude geometric layout estimate for dynamic video scenes,
we use the method proposed by Raza et al.[17]. Their
method provides confidence for each pixel belonging to ge-
ometric classes, such as sky, ground, static-solid, porous,
and movable-objects. We use the most likely geometric la-
bel and the difference of the average confidence of each ge-
ometric class of neighboring regions as feature for occlu-
sion reasoning.



4.3. MRF Model

Our goal is to maximize the probability of an edgelet e
being an occlusion boundary given the edgelet feature vec-
tor, i.e., P (e = Occlusion|X). We can estimate this proba-
bility in MRF model as,

P (e = Occlusion|X) =
1

Z

N∏
n=1

gn(en, Xn)∏
m∈Conn.(n)

fmn(en, em)

(6)

where gn(·) is the unary probability of an edgelet being an
occlusion boundary, and fmn(·, ·) is the pairwise term cap-
turing the occlusion probability for an edgelet with relation
to its connected edgelets. The unary term gn(·), the oc-
clusion boundary probability of an edgelet, is computed by
training a random forest classifier. Random forest are use-
ful for their performance on learning high dimensional non-
linear relationships, while providing feature selection and
importance for free [2, 18]. We trained random forest with
105 trees, 11 random features per node, and a maximum
depth of 35 nodes for a tree. We train the unary classifier
with the features from each edgelet of each frame to capture
the temporal variations.

The unary classifier, computes the probability of an in-
dividual edgelet to be an occlusion boundary edgelet. To
enforce continuity of occlusion boundaries, we train a sepa-
rate random forest classifier to estimate the pairwise edgelet
probability. For continuity classifier, we compute the fea-
ture for each edgelet pair by concatenating the unary fea-
tures of both the individual edgelets. The positive pairwise
occlusion boundaries are the examples with both edgelets
having ground truth occlusion boundary label ”true”.

To predict occlusion boundaries for a test video, we com-
pute occlusion features for each edge of each frame in the
over-segmented video. Then we compute the unary and
pairwise occlusion boundary probabilities. Final occlusion
probability for an edgelet is computed using the MRF model
given in ??. We use loopy-belief propagation algorithm to
find the approximate solution for ??. Pair-wise continu-
ity MRF model reduces false positives over unary occlu-
sion boundary estimate, as shown in ??. Now, we have
assigned each edgelet an occlusion probability and thresh-
olding these probabilities would give occlusion boundaries.
However, these estimates may be temporally inconsistent,
i.e., occlusion probability of an edgelet may change signifi-
cantly from one frame to the next.

To provide temporal consistent occlusion boundaries,
we again leverage from video segmentation to temporally
smooth the occlusion probability of an edge over a tempo-
ral window. The temporal window starts where an edgelet
is first formed by two neighboring spatio-temporal regions.
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Figure 5. Pairwise MRF reduces the false positives in unary pre-
diction as shown above. The yellow, green, and red boundaries
show true positives, false positives, and false negatives, respec-
tively.

Once we have processed the number of instances of a
unique spatio-temporal edgelet equal to the length of tem-
poral window, we average the occlusion boundary proba-
bilities in the temporal window for that edgelet, and ignore
all future instances of that edgelet. This results in an occlu-
sion boundary algorithm which is linear to the number of
unique edgelets in a video than the algorithms which treat
video as individual frames and have a complexity of number
of edgelets × number of frames. We experiment with dif-
ferent lengths of temporal windows to filter out temporally
inconsistent boundaries (??).

5. Results
In this section, we report the quantitative and qualita-

tive results of our algorithm. Specifically, we measure the
performance of our method as precision vs. recall (PR)
curves estimated over 5-fold cross-validation by varying the
threshold. To compute the precision vs. recall curve for
our experiments with temporal smoothing, we choose the
temporal window with maximum F-1 measure. In our ex-
periments, the occlusion boundary prediction performance
becomes stable for a temporal window of size greater than
15 frames. The plot in ?? shows that geometric features
combined with temporal smoothing results in the best per-
formance. Also, note that temporal smoothing improves
performance for each feature set. ?? shows F-1 measure
of each case.

Our results show qualitative improvement in occlusion
boundary detection using geometric context (please see sup-
plementary video). In ??, we show the importance of each
feature set from the random forest’s out-of-bag training es-
timate. It is evident from the bar-plot, that geometric fea-
tures provide more discriminative information for occlusion
boundary detection. We show examples to verify the im-
portance of these geometric features, in ??. Note, that the
inclusion of geometric features improves occlusion bound-
ary detection by removing boundaries within a geometric
class, e.g., boundaries appearing on the ground, across sky,
or within trees. Further, they provide important cues to en-
force a boundary between different geometric classes.

Some misclassification results are shown in ??. A rea-
son for occlusion boundary misclassification is that we have
a very challenging dataset with fast jittery motion. Spatio-
temporal segments tend to break quickly in such videos, re-
sulting in very short lived temporal boundaries. For these
boundaries temporal smoothing is not effective. Some mis-
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Figure 6. Performance evaluation: Precision vs. recall (PR) curves for occlusion boundary detection on our dataset. For our algorithm, we
used a temporal window of 30 frames. Legend: ALL (appearance+flow+geometric features), App (appearance features only), and Temp
(with temporal smoothing). (Left) Results show that geometric features combined with temporal smoothing yields in the best performance
compared to other feature combinations.(Right) Comparison of our method with Sketch Tokens [15], SE-MS T4 [5], SE-SS T4 [5], and
Gb [14].

Features Ind. Frames Temporal
ALL 0.58 0.60
Appearance+Flow 0.53 0.55
Appearance Only 0.52 0.53

Table 2. Comparison of feature sets by F-1 measure. Appearance
only uses “Boundary and Region Based Cues”. Appearance+Flow
adds to it “Optical-Flow Based Cues.” Individual frame-based pro-
cessing considers each frame individually in the video, whereas
the temporal approach takes advantage of causality in videos, by
processing over a 30 frame temporal window.

Algorithm F-1
Ours 0.60
Sketch Tokens [15] 0.42
SE-MS T4 [5] 0.46
SE-SS T4 [5] 0.43
Gb [14] 0.21

Table 3. Performance comparison of our method with existing al-
gorithms. Our method exploits causality in videos for temporal
occlusion boundary detection.

0

0.1

0.2

0.3

Figure 7. Feature importance estimate from random forest over
5-fold cross-validation. The bar-plot shows the number of votes
casted by each feature for the correct class in out-of-bag esti-
mate [2]. Geometric confidence FGConf estimate of the neighbor-
ing regions stands out as most useful along with their difference
FGDiff, and the absolute sum FGDSum. Other useful features are
flow magnitude variance Fmag, photo-consistency FPC, and color
feature FClr.

classifications also occur in shadows due to bad lighting
conditions.

Direct comparisons and evaluations to other efforts and
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Figure 8. Qualitative analysis of feature importance: Figure shows
qualitatively that geometric features improve accuracy signifi-
cantly. Visual comparison is performed with a temporal window
of size = 30, and threshold is selected at the peak of F-1 mea-
sure. Occlusion and non-occlusion boundaries are shown in red
and blue, respectively.
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Figure 9. Failure cases. Occlusion boundaries are mis-predicted
due to shades and fast jittering movement. Temporal smoothing
is not useful in fast jittery motion sequences due to short temporal
life of segments.
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Figure 10. Qualitative comparison of occlusion boundaries pre-
dicted by Gb [14], Sketch Tokens [15], and multi-scale (SE-
MS T4) and single scale (SE-SS T4) Structured Edges [5]. The
probabilistic boundaries are thresholded using the best F-1 score
over all sequences.

datasets, with quantitative measures, is hard for our work
as there is no such dataset with temporal occlusion bound-
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Figure 11. Qualitative results for occlusion boundary prediction: (left) Ground truth, (right) Predicted occlusion boundaries using geo-
metric, flow, and appearance features with temporal smoothing (temporal window size=30). Occlusion and non-occlusion boundaries are
shown in red and blue, respectively.

ary, and semantic label annotations (see ??). In any case,
we do undertake and provide a comparison with the oc-
clusion boundaries detected with other occlusion boundary
detection algorithms[14, 15, 5]. We applied their publicly
available code on our dataset. ?? and ?? (Right) shows the
comparison of our method with the existing algorithms. To
compensate for occlusion boundaries detected by different
algorithms in proximity of our ground-truth, we dilate our
boundary labelling by a pixel (i.e., an error margin of 3 pix-
els). We achieve better performance as compared to other
methods. Our algorithm can avoid making false-positive
detection within a geometric class, e.g., within tree regions,
or boundaries on the ground but other algorithms lack this
ability. In addition, by leveraging spatio-temporal occlu-
sion boundaries, we can learn features from all the tempo-
ral samples of occlusion boundaries. ?? shows qualitative
comparison of the above comparison by overlaying occlu-
sion boundaries threholded at best F-1 score. It shows that

our algorithm can detect occlusion boundaries between dif-
ferent geometric classes, and avoid false positives within a
geometric class. Sketch tokens algorithm detects most of the
boundaries as occlusion boundaries, while Gb, SE-MS T4,
and SE-SS T4 detect less boundaries with very few false
positives. It should be noted that in our temporal occlusion
boundary detection approach, we exploit causality to pro-
cess the videos efficiently. Temporal occlusion boundary
detection only requires T (i.e., length of temporal window)
samples of each unique boundary but other approaches re-
quire processing the whole video sequence. Operating on a
temporal window makes it possible for our algorithm to be
be applied to streaming video approaches. ?? shows more
qualitative results of our approach.

6. Conclusion
We have presented an approach for finding temporally

consistent occlusion boundaries in dynamic outdoor scenes.
We learn occlusion boundaries using edge, flow, and ge-



ometric context based features in a pairwise edgelet con-
tinuity MRF model. The results are computed on the
spatio-temporal boundaries provided by over-segmentation
[8]. We choose graph-base video segmentation algorithm
for its accuracy in preserving occlusion boudaries, tempo-
ral coherence, and ability to handle long video sequences
efficiently. However, our approach for learning occlusion
boundaries is independent of any particular video segmen-
tation algorithm and should perform well using other video
over-segmentation algorithms. The results in this study
demonstrate the importance and benefit of integrating scene
layout for occlusion reasoning. Moreover, we show that
temporal smoothing improves accuracy over independent
frame-by-frame processing. Our proposed algorithm also
processes videos efficiently by exploiting causality and tem-
poral redundancy using spatio-temporal video segmenta-
tion. We have also developed a comprehensive dataset with
ground truth temporal occlusion boundary annotations and
a broad set of examples containing dynamic scenes. In the
future, we plan to integrate more semantic classes and depth
information in our method.
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[1] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik. Con-

tour detection and hierarchical image segmentation. PAMI,
33(5):898–916, 2011. 2

[2] L. Breiman. Random forests. Machine learning, 45(1):5–32,
2001. 5, 6

[3] G. J. Brostow, J. Shotton, J. Fauqueur, and R. Cipolla. Seg-
mentation and recognition using structure from motion point
clouds. In ECCV (1), pages 44–57, 2008. 2

[4] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A
naturalistic open source movie for optical flow evaluation.
In European Conf. on Computer Vision (ECCV), 2012. 2

[5] P. Dollár and C. L. Zitnick. Structured forests for fast edge
detection. In IEEE ICCV, 2013. 2, 6, 7

[6] D. Fleet, M. Black, and O. Nestares. Bayesian inference of
visual motion boundaries. Exploring artificial intelligence in
the new millennium, pages 139–173, 2003. 2

[7] S. Gould, R. Fulton, and D. Koller. Decomposing a scene
into geometric and semantically consistent regions. In ICCV,
2009. 2

[8] M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hi-
erarchical graph-based video segmentation. In IEEE CVPR,
2010. 1, 3, 8

[9] X. He and A. Yuille. Occlusion boundary detection using
pseudo-depth. In ECCV, pages 539–552. Springer, 2010. 2

[10] D. Hoiem, A. Efros, and M. Hebert. Closing the loop in
scene interpretation. In IEEE CVPR. 4

[11] D. Hoiem, A. Stein, A. Efros, and M. Hebert. Recovering
occlusion boundaries from a single image. In ICCV, pages
1–8, 2007. 1, 2, 3, 4

[12] A. Humayun, O. Mac Aodha, and G. Brostow. Learning to
find occlusion regions. In IEEE CVPR, 2011. 2, 4

[13] S. Ince and J. Konrad. Occlusion-aware optical flow estima-
tion. Image Processing, IEEE Transactions on, 17(8):1443–
1451, 2008. 4

[14] M. Leordeanu, R. Sukthankar, and C. Sminchisescu. Ef-
ficient closed-form solution to generalized boundary detec-
tion. In ECCV 2012, pages 516–529. Springer, 2012. 2, 6,
7

[15] J. J. Lim, C. L. Zitnick, and P. Dollar. Sketch tokens: A
learned mid-level representation for contour and object de-
tection. In IEEE CVPR, 2013. 2, 6, 7

[16] D. R. Martin, C. C. Fowlkes, and J. Malik. Learning to detect
natural image boundaries using local brightness, color, and
texture cues. IEEE PAMI, 26(5):530 –549, may 2004. 2

[17] S. Raza, M. Grundmann, and I. Essa. Geometric context
from video. In IEEE CVPR, 2013. 3, 4

[18] Y. Saeys, T. Abeel, and Y. Van de Peer. Robust feature
selection using ensemble feature selection techniques. In
Machine Learning and Knowledge Discovery in Databases,
pages 313–325. Springer, 2008. 5

[19] A. Saxena, S. Chung, and A. Ng. 3-D Depth Reconstruction
from a Single Still image. IJCV, 76(1):53–69, 2008. 2

[20] A. Saxena, M. Sun, and A. Y. Ng. Make3d: Learning 3d
scene structure from a single still image. PAMI, 31(5):824–
840, 2009. 2

[21] A. Stein and M. Hebert. Combining local appearance and
motion cues for occlusion boundary detection. Robotics In-
stitute, page 349, 2007. 3

[22] A. Stein and M. Hebert. Occlusion boundaries from motion:
low-level detection and mid-level reasoning. IJCV, 2007. 2

[23] P. Sundberg, T. Brox, M. Maire, P. Arbeláez, and J. Malik.
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