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Talk Outline 
• Semantic-less Motion Segmentation (Vidal et al., ECCV02, IJCV06; Vidal, Ma and Sastry 

CVPR03, PAMI05; Vidal and Sastry CVPR03; Vidal and Ma ECCV04, JMIV06; Vidal and Hartley, CVPR04; Tron and Vidal, CVPR07; Li et al. 
CVPR07; Goh and Vidal CVPR07; Vidal and Hartley, PAMI08; Vidal et al. IJCV08; Rao et al. CVPR 08, PAMI 09; Elhamifar and Vidal, CVPR 09) 
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• Coarse-to-Fine Semantic Video Segmentation (Jain et al. ICCV 2013)
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René Vidal 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2D Motion Segmentation Problem



Prior Work on 2D Motion Segmentation
• Cluster locally estimated models (Wang-Adelson ’93-’94) 

!
• Fit one dominant motion at a time (Irani-Peleg ’92) 

!
• Fit a mixture model (Jepson-Black’93, Ayer-Sawhney ’95, Darrel-Pentland’95, Weiss-

Adelson’96, Weiss’97, Torr-Szeliski-Anandan ’99, Khan-Sha’01) 
!

• Apply normalized cuts to motion profile (Shi-Malik ’98)

c� 2009 Universal Pictures

c� 2007 Miramax Films

Figure 8: Spatio-temporal segmentation. Shown are two frames each from video sequences with their corresponding segmentations. Same
color denotes the same spatio-temporal region. Region boundaries and identity are tracked reliably (note body and skin of the water-skier,
football player numbers and persons in bottom videos. 3rd row: from Public Enemies, c�2009 Universal Pictures, 4th row: from No country
for old men, c�2007 Miramax Films.

(a)

(b)

Figure 9: Flower garden sequence (⇠ 30 frames apart). (a) From left to right: Original sequence, our segmentation, Wang et al.’s [20]
result, Khan and Shah’s [10] result, Brendel and Todorovic’s [3] results, Dementhons’ [6] result. Our segmentation result is coherent over
all 30 frames. Brendel and Todorovic’s [3] result (5th from left) changes region identity noticeably (sky, houses and flower field) while
Khan and Shah’s [10] result (4th from left) is inconsistent on the right hand side (houses identity changes). Our segmentation retains
important details like the houses in the background while Wang et al.’s [20] (3rd from left) as well as Dementhons’ [6] result (right-most)
do not show the same clear-cut boundaries (e.g. the roof of the houses). Dementhons’ [6] result (right-most) also exemplifies a typical
property when segmenting in feature space: Regions are not spatially connected and exhibit significant holes making them hard to use for
later analysis stages. (b) A finer granularity of our segmentation (left 2 frames), the consistent tooned result by averaging the color over the
spatio-temporal regions (middle two frames), and a time-slice from our segmentation (5th from left) compared to the time-slice of Wang
et al. [18] (last frame). Our time-slice is less fragmented indicating better temporal coherence.

Original Grundman ‘10 Wang-Adelson'94 Khan-Shah’01 Brendel’09 Dementhon’02



3D Motion Segmentation Problem
!
– I 
– Ou 
!
!
!
!

• Motion of a rigid-body lives  
in 3D affine subspace  
(Boult and Brown ’91,  
Tomasi and Kanade ’92) 
– P = #points 
– F = #frames



Prior Work on 3D Motion Segmentation
• Iterative methods 

– K-subspaces (Bradley-Mangasarian ’00, Kambhatla-Leen ’94,  
Tseng’00, Agarwal-Mustafa ’04, Zhang et al. ’09, Aldroubi et al. ’09) 

• Probabilistic methods 
– Mixtures of PPCA (Tipping-Bishop ’99, Grubber-Weiss ’04,  

Kanatani ’04, Archambeau et al. ’08, Chen ’11) 
– Agglomerative Lossy Compression  

(Ma et al. ’07, Rao et al. ’08) 
– RANSAC (Leonardis et al.’02, Yang et al. ’06, Haralik-Harpaz ’07) 

• Algebraic methods 
– Factorization (Boult-Brown’91, Costeira-Kanade’98, Gear’98, Kanatani et al.’01, Wu et al.’01)  

– Generalized PCA: (Shizawa-Maze ’91, Vidal et al. ’03 ’04 ’05, Huang et al. ’05, Yang et al. 
’05, Derksen ’07, Ma et al. ’08, Ozay et al. ‘10) 

• Spectral clustering-based methods (Zelnik-Manor ’03, Yan-Pollefeys ’06, 
Govindu ’05, Agarwal et al. ’05, Fan-Wu ’06, Goh-Vidal ’07, Chen-Lerman ’08, Elhamifar-Vidal ’09 ’10, 
Lauer-Schnorr ’09, Zhang et al. ’10, Liu et al. ’10, Favaro et al. ’11, Candes ’12)



• Spectral clustering 
– Represent points as nodes in graph  
– Connect points    and     with weight  
– Infer clusters from Laplacian of  

!
• Good affinity matrix      for subspaces? 

– . 
– Points in the same subspace:  
– Points in different subspaces:   

!
• Challenge: cannot define a pairwise affinity 

!
• Multiway affinity based on d+1 or d+2 points (Chen-Lerman ’08) 

!
• Affinity based on angles between local subspaces (Yan-Pollefeys ’06)

How to Define a Good Subspace Affinity?

G
i j cij

G

cij = 0
cij 6= 0

C
ci,j = exp(�d2(yi,yj))



Sparse Subspace Clustering (SSC)
• Data in a union of subspaces are self-expressive 

!
!
!

• Data in a union of subspaces admit a subspace-sparse 
representation 

!
!
!
!
!
!

• The affinity can be constructed using L1 minimization

S2

S3

S1

E. Elhamifar and R. Vidal. Sparse Subspace Clustering. CVPR 2009. 
E. Elhamifar and R. Vidal. Clustering Disjoint Subspaces via Sparse Representation. ICASSP 2010. 
E. Elhamifar and R. Vidal. Sparse Subspace Clustering: Algorithm, Theory and Applications. TPAMI 2013.

P1 : min kcik1 s.t. yi = Y ci, cii = 0

yi =
NX

j=1

cjiyj =) yj = Y ci =) Y = Y C



Hopkins 155 motion segmentation database
• Collected 155 sequences (Tron-Vidal ‘07) 

– 120 with 2 motions 
– 35 with 3 motions 

• Types of sequences 
– Checkerboard sequences: mostly full  

dimensional and independent motions 
– Traffic sequences: mostly degenerate (linear, 

planar) and partially dependent motions 
– Articulated sequences: mostly full dimensional  

and partially dependent motions 

• Point correspondences 
– In few cases, provided by Kanatani & Pollefeys 
– In most cases, extracted semi-automatically 

with OpenCV

R. Tron and R. Vidal. A Benchmark for the Comparison of 3-D Motion Segmentation Algorithms. CVPR 2007.

http://www.cis.jhu.edu/~rvidal/publications/cvpr07-benchmark.pdf


GPCA LLMC LSA RANSAC MSL SCC ALC LRR LRSC SSC
All 10.34 4.97 4.94 9.76 5.03 2.33 3.37 3.16 3.28 1.24

Results on the Hopkins 155 database
• 2 motions, 120 sequences, 266 points, 30 frames 

!
!
!
!
!

• 3 motions, 35 sequences, 398 points, 29 frames 
!
!
!
!
!

• All

GPCA LLMC LSA RANSAC MSL SCC ALC SSC

Checkerboard 6.09 3.96 2.57 6.52 4.46 1.30 1.55 1.12
Tra�c 1.41 3.53 5.43 2.55 2.23 1.07 1.59 0.02
Articulated 2.88 6.48 4.10 7.25 7.23 3.68 10.70 0.62
All 4.59 4.08 3.45 5.56 4.14 1.46 2.40 0.82

GPCA LLMC LSA RANSAC MSL SCC ALC SSC

Checkerboard 31.95 8.48 5.80 25.78 10.38 5.68 5.20 2.97
Tra�c 19.83 6.04 25.07 12.83 1.80 2.35 7.75 0.58
Articulated 16.85 9.38 7.25 21.38 2.71 10.94 21.08 1.42
All 28.66 8.04 9.73 22.94 8.23 5.31 6.69 2.45



Dense 3D Motion Segmentation

• BMS-26 (Brox-Malik’10) 
– 26 video sequences with pixel-

accurate segmentation 
annotation of moving objects 

– 12 sequences are taken from 
the Hopkins 155 dataset 

• FBMS-59 (Ochs’14)

T. Brox, J. Malik Object segmentation by long term analysis of point trajectories, ECCV 2010 
P. Ochs and T. Brox. Higher Order Motion Models and Spectral Clustering. CVPR, 2012 
P. Ochs, J. Malik, and T. Brox. Segmentation of moving objects by long term video analysis, PAMI 2014



Dense 3D Motion Segmentation

• Sparse trajectory clustering: 
– Spectral clustering based on 

pairwise motion affinities 
• Dense segmentation 

– Variational approach based on 
color, texture, etc.

T. Brox, J. Malik Object segmentation by long term analysis of point trajectories, ECCV 2010 
P. Ochs and T. Brox. Higher Order Motion Models and Spectral Clustering. CVPR, 2012 
P. Ochs, J. Malik, and T. Brox. Segmentation of moving objects by long term video analysis, PAMI 2013



Future Vistas in 3D Motion Segmentation
• Good progress in the last decades 

– Sparse trajectories 
– Complete trajectories  
– Short videos  
– Affine cameras 

!
• Ongoing and future directions 

– Dense trajectories 
– Incomplete and corrupted trajectories 
– Appearing and disappearing objects 
– Longer videos 
– Static objects 
– Deformable objects 
– Strong perspective effects  

(Torr et al. ’98, Shashua et al. ’00, ’01, ’02, Vidal et al. ’02, ’06, ‘07)

(Doretto’03, Chan’05, ’09, Ghoreyshi-Vidal’06)



Coarse-to-fine Semantic Video 
Segmentation Using Supervoxel Trees 

Aastha Jain  
LinkedIn

Shaunak Chatterjee  
UC Berkeley

René Vidal 
Johns Hopkins



Semantic Video Segmentation Problem
• Given a video sequence, assign a class label to each pixel

SUNY Dataset. Chen et al. Propagating multi-call pixel labels throughout video frames, WNYIPW 2010 



Computational Challenges
!
!

!
!

• Existing energy minimization approaches trade-off accuracy 
for efficiency by finding an approximate solution 
– Graph cuts [Boykov et al. TPAMI01] 
– Belief propagation [Felzenszwalb-Huttenlocher IJCV06] 

– Hierarchical graph cuts [Kumar UIA09] 
!

• While successful for many tasks in image segmentation, 
these approximate methods continue to be very slow for 
applications in video segmentation 

!
• How to perform efficient semantic video segmentation?

V = number of supervoxels

L = number of labels

)
O(LV

) possible segmentations



Proposed Approach
• Observations 

– Real videos are spatially and temporally coherent 
– Set of coherent labelings is much smaller than the set of all labelings 

!
• Approach 

– Construct a hierarchy of supervoxels 
– Propose a coarse-to-fine energy minimization strategy 

!
• Advantages 

– Exact: it gives the same solution as minimizing over the finest graph 
– General: it can be used with any supervoxel hierarchy and any energy 

minimization algorithm to minimize any energy function 
– Efficient: it gives 2x-10x speedup for several datasets with varying 

degrees of spatio-temporal coherence



xi � L
l � L = {1, . . . , L}

Energy Minimization Problem
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Energy design: Winn CVPR06, Shotton CVPR08, Shotton IJCV09, 
Rabinovich CVPR07, Fulkerson ICCV09, Micusik ICCVW09, 
Ladicky ICCV09, Russell ECCV10, Vijayanarasimhan POCV09, 
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Hierarchy of Supervoxels
• Supervoxel Based Methods [Xu and Corso CVPR12]  

– SWA [Sharon CVPR00], Graph Based [Felzenszwalb IJCV04], Hierarchical 
[Grundmann CVPR10], Mean Shift [Paris CVPR07], Nystom [Fowlkes TPAMI04]

Original image Level 5(coarsest) Level 4 Level 3 Level 2 Level 1 (finest)

Figure 1. Supervoxel hierarchy for an image. The top row shows the various abstraction levels in the supervoxel tree. The second row
shows the portion of the supervoxel tree explored by our coarse-to-fine scheme to find the optimal labeling of segments.

whose refinements were not required to find the optimal la-
beling. It is clear that large portions of the search space can
be pruned by assigning several labels at the coarser levels.

Given this hierarchy, we construct a series of energy
functions for different levels of abstraction and propose a
coarse-to-fine inference scheme that minimizes these en-
ergies to find an optimal segmentation at the finest level
of the hierarchy. To define the different energy functions,
we first augment the set of labels with an auxiliary label
called mixed, which accounts for the fact that coarse super-
voxels may contain finer supervoxels with more than one
pure label. We then define the unary, pairwise and higher-
order costs of the energy at any level of the hierarchy as
lower bounds for the costs at the finest level. By virtue of
this choice, we can guarantee that the optimal segmentation
upon termination is identical to the segmentation we would
have obtained had we solved the original, non-hierarchical
problem, which is exponentially larger in size. Our coarse-
to-fine inference scheme starts by performing inference at
the coarsest level of the supervoxel hierarchy using any in-
ference method (e.g., graph cuts or belief propagation). If
the solution at the current level of refinement is such that
no supervoxel is assigned the mixed label, then an optimal
solution at the finest level has been found by performing in-
ference over a very coarse graph. Otherwise, the mixed su-
pervoxels are refined into its constituent (finer) supervoxels,
and a new inference problem is solved over both coarse and
fine supervoxels. This process is repeated until an optimal
labeling does not assign the mixed label to any supervoxel.

In general, it is very hard to know if the proposed scheme
is more efficient that direct inference over the finest layer.
Clearly if the hierarchy of supervoxels is poorly constructed
so that many refinement cycles are needed, our method
could be less efficient because it solves too many small in-
ference problems. In practice, we observe that the speedup
of our approach increases with the spatio-temporal conti-
nuity of the data. Our experiments show a speedup of be-
tween 2x–10x on videos from the SUNY Buffalo-Xiph.org
[9] and CamVid [7] datasets using the proposed coarse-to-

fine inference scheme as opposed to the corresponding flat
algorithm (graph-cuts or belief propagation).

Related work. There are several existing approaches
to hierarchical image and video segmentation. One line
of work in hierarchical video segmentation is a bottom-
up approach based on merging supervoxels using similarity
metrics based on variation of intensity inside a supervoxel
[13, 18]. However, these approaches do not aim to mini-
mize a specific energy function, which makes it difficult to
compare with our method. Nonetheless, the supervoxel tree
obtained by these approaches can be used as the abstraction
hierarchy in our framework.

Another line of work defines a hierarchical cost func-
tion over supervoxels at all levels. This includes the Pylon
model [25] and associative hierarchical CRFs [22]. This ap-
proach differs from our work in two key aspects. First, [22]
uses mixed labels to enforce label continuity via a higher-
order cost. In sharp contrast, we use mixed labels to distin-
guish between the very large set of unlikely segmentations
and a much smaller set of more likely segmentations, and
to prune the former set. Second, the tree inference methods
used in [22, 25] are very different from the one we pro-
pose. Specifically, the works of [22, 25] solve a multilayer
optimization problem, while we optimize a cost function
defined at the finest layer only. To do this more efficiently,
we use the supervoxel tree to iteratively refine the parts of
the video that could have more than one label. In addition,
we use lower bounds on the energy to ensure the exactness
of our solution, similar to what is done in the coarse-to-fine
dynamic programming [26] and temporally abstract Viterbi
[8] algorithms.

There is a third line of work on hierarchical inference al-
gorithms which do not guarantee convergence to the same
solution as the corresponding flat version. [21] introduces
an inference algorithm that aims to produce better solu-
tions than ↵-expansion, but is much slower than the actual
↵-expansion. [14] proposes a version of hierarchical be-
lief propagation for images. However, unlike our method,
the abstraction used is image-agnostic and the messages at
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beling. It is clear that large portions of the search space can
be pruned by assigning several labels at the coarser levels.

Given this hierarchy, we construct a series of energy
functions for different levels of abstraction and propose a
coarse-to-fine inference scheme that minimizes these en-
ergies to find an optimal segmentation at the finest level
of the hierarchy. To define the different energy functions,
we first augment the set of labels with an auxiliary label
called mixed, which accounts for the fact that coarse super-
voxels may contain finer supervoxels with more than one
pure label. We then define the unary, pairwise and higher-
order costs of the energy at any level of the hierarchy as
lower bounds for the costs at the finest level. By virtue of
this choice, we can guarantee that the optimal segmentation
upon termination is identical to the segmentation we would
have obtained had we solved the original, non-hierarchical
problem, which is exponentially larger in size. Our coarse-
to-fine inference scheme starts by performing inference at
the coarsest level of the supervoxel hierarchy using any in-
ference method (e.g., graph cuts or belief propagation). If
the solution at the current level of refinement is such that
no supervoxel is assigned the mixed label, then an optimal
solution at the finest level has been found by performing in-
ference over a very coarse graph. Otherwise, the mixed su-
pervoxels are refined into its constituent (finer) supervoxels,
and a new inference problem is solved over both coarse and
fine supervoxels. This process is repeated until an optimal
labeling does not assign the mixed label to any supervoxel.

In general, it is very hard to know if the proposed scheme
is more efficient that direct inference over the finest layer.
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so that many refinement cycles are needed, our method
could be less efficient because it solves too many small in-
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of our approach increases with the spatio-temporal conti-
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fine inference scheme as opposed to the corresponding flat
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Related work. There are several existing approaches
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of work in hierarchical video segmentation is a bottom-
up approach based on merging supervoxels using similarity
metrics based on variation of intensity inside a supervoxel
[13, 18]. However, these approaches do not aim to mini-
mize a specific energy function, which makes it difficult to
compare with our method. Nonetheless, the supervoxel tree
obtained by these approaches can be used as the abstraction
hierarchy in our framework.

Another line of work defines a hierarchical cost func-
tion over supervoxels at all levels. This includes the Pylon
model [25] and associative hierarchical CRFs [22]. This ap-
proach differs from our work in two key aspects. First, [22]
uses mixed labels to enforce label continuity via a higher-
order cost. In sharp contrast, we use mixed labels to distin-
guish between the very large set of unlikely segmentations
and a much smaller set of more likely segmentations, and
to prune the former set. Second, the tree inference methods
used in [22, 25] are very different from the one we pro-
pose. Specifically, the works of [22, 25] solve a multilayer
optimization problem, while we optimize a cost function
defined at the finest layer only. To do this more efficiently,
we use the supervoxel tree to iteratively refine the parts of
the video that could have more than one label. In addition,
we use lower bounds on the energy to ensure the exactness
of our solution, similar to what is done in the coarse-to-fine
dynamic programming [26] and temporally abstract Viterbi
[8] algorithms.

There is a third line of work on hierarchical inference al-
gorithms which do not guarantee convergence to the same
solution as the corresponding flat version. [21] introduces
an inference algorithm that aims to produce better solu-
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Coarse-to-Fine Energy Minimization
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Iteration 1Current = Level 4

Level 3 

Mixed Pure

Next

Refine



Iteration 2Current

Mixed Pure

Level 2 

Next

Refine

Keep refining supervoxels 
with the mixed label until 
all supervoxels are pure



Exactness of the Coarse-to-Fine Solution
!
!
!
!
!
!
!
!
!

• Theorem. If the coarse potentials in             are lower bounds 
of their constituent exact potentials, the set of minimizers of 
the coarse-to-fine procedure (with algorithm A in step 3) is the 
same as that of running algorithm A at the finest level

Algorithm 1 Coarse-to-fine Inference Algorithm (V1:m
, )

1: Vcurr  Vm

2: repeat

3: Find xVcurr
which minimizes EVcurr

4: for all vi
j 2 Vcurr

such that xi
j
= L+ 1 do

5: Refine vi
j

6: Vcurr  Vcurr [R(i, j, j � 1) \ vij
7: end for

8: until L+ 1 /2 xVcurr

9: return xVcurr

Chatterjee and Russel. A temporally abstracted Viterbi algorithm, UAI11. 
Finley and Joachims Training Structural SVMs when Exact Inference is Intractable, 2008. 



Construction of the Coarse Potentials
• Consider the energy at the finest level (level 1) 

!
!
!

• Unary cost for a coarse supervoxel at level j  
– Pure label: sum of the unary costs  

of constituent supervoxels at level 1 
!

– Mixed label: minimum cost over constituent supervoxels at level 1 
subject to all the constituent supervoxels not getting the same label 

!
• Pairwise cost 

– Pure label: sum of the pairwise costs of the edges connecting the 
constituent supervoxels 

– Mixed label: zero

E(x) = �U

X

vi2V
 

U
i (xi, V ) + �P

X

eij2E
 

P
i,j(xi, xj , V ) + �H

X

c2C
 

H
c (xc, V )



Experiments: Datasets
• SUNY 

– 24 classes, 2 in each video, 70 training frames, 100 testing frames 
!
!
!
!
!
!

• CamVid   
– 11 classes, 100 training frames, 100 testing frames



Experiments: Quantitative Results
• Time taken by the different inference algorithms (in minutes) 

!
!
!
!
!
!

• Computational speedup 
– CamVid: 3x-5x (2x-4x with time to compute hierarchy) 
– SUNY:  7x-10x (5x-6x with time to compute hierarchy) 

!
• Percentage of time spent on bound computation 

– Graph cut:              40-50% 
– Belief propagation: 20-25%

Algorithm CamVid SUNY

CamVid1 CamVid2 CamVid3 CamVid4 CamVid5 Bus Football Ice

GC Flat 130.1 137.3 117.6 145.1 140.1 35.3 25.0 32.7

Coarse-to-fine 32.7 40.9 27.3 43.8 29.4 6.5 2.3 5.3

BP Flat 256.0 270.1 258.3 307.0 319.2 50.3 34.7 50.9

Coarse-to-fine 50.5 79.1 61.5 107.7 90.5 9.3 4.1 8.3



Experiments: Qualitative Results
• Reduced problem size

Original image Ground Truth Level 5 (coarsest) Level 4 Level 3 Level 2
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Figure 2. Explored portions of the supervoxel tree. The blacked out portions in each superpixel level denotes the patch of superpixels which
were never refined during inference. The top row shows results from the “football” video, the middle row from the “bus” video and the
bottom row from the “ice” video (all from the SUNY dataset).

Algorithm CamVid SUNY
CamVid1 CamVid2 CamVid3 CamVid4 CamVid5 Bus Football Ice

↵-expansion Flat 130.1 137.3 117.6 145.1 140.1 35.3 25.0 32.7
Coarse-to-fine 32.7 40.9 27.3 43.8 29.4 6.5 2.3 5.3

Belief Propagation Flat 256.0 270.1 258.3 307.0 319.2 50.3 34.7 50.9
Coarse-to-fine 50.5 79.1 61.5 107.7 90.5 9.3 4.1 8.3

Table 1. Time taken by the different inference algorithms on different data sets (in minutes). The times reported for the coarse-to-fine case
do not include supervoxel tree computation time. For the CamVid videos, the speedup is between 3x–5x, while for the SUNY videos the
speedup is between 7x–10x. If we include the time of the on-demand refinement scheme discussed in Section 3.5, the overall speedup
reduces to 2x–4x for CamVid and 5x–6x for the SUNY videos.

same value that would be obtained by running inference on
the flat problem formulation. As shown in Figure 3, this
final accuracy lies between 55% and 75%. However, there
seems to be no clear trend in how this accuracy is achieved
as a function of iterations. For the “bus” video, the accu-
racy quickly spikes up and then reaches a plateau, while for
“ice”, it spikes up after a few iterations. A surrogate for this
accuracy (the percentage accuracy is often unavailable since
there is no ground truth) is the cost function. We can use the
cost function to design an anytime version of the algorithm,
where termination could be guided by sharp spikes (or the
lack thereof) in the cost function.

5. Conclusion
We have presented a general coarse-to-fine scheme for

video segmentation. The key intuition behind the proposed
solution is the fact that the set of likely label assignments
is exponentially smaller than the set of all possible label as-
signments. A flat problem formulation works with the latter
large set, while we use an abstraction scheme (namely su-
pervoxel trees) to identify the former smaller set and work
on the smaller problem. The framework is general since it
can use any optimization algorithm to find the optimal label

Figure 3. Percentage of correctly classified supervoxels after every
iteration of the coarse-to-fine belief propagation algorithm.
for the intermediate problems. It is also exact since it uses
admissible heuristic costs for the coarser supervoxel poten-
tials. Results using ↵-expansion and belief propagation on
two different video datasets showed speedups ranging from
2x–10x. As expected, the speedup obtained is larger for
videos with more spatio-temporal continuity.

As with any general framework, there remains a fair bit
of exploration to do. Other abstraction schemes and op-



Experiments: Qualitative Results
• Segmentation accuracy versus number of refinement cycles
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Figure 2. Explored portions of the supervoxel tree. The blacked out portions in each superpixel level denotes the patch of superpixels which
were never refined during inference. The top row shows results from the “football” video, the middle row from the “bus” video and the
bottom row from the “ice” video (all from the SUNY dataset).

Algorithm CamVid SUNY
CamVid1 CamVid2 CamVid3 CamVid4 CamVid5 Bus Football Ice

↵-expansion Flat 130.1 137.3 117.6 145.1 140.1 35.3 25.0 32.7
Coarse-to-fine 32.7 40.9 27.3 43.8 29.4 6.5 2.3 5.3

Belief Propagation Flat 256.0 270.1 258.3 307.0 319.2 50.3 34.7 50.9
Coarse-to-fine 50.5 79.1 61.5 107.7 90.5 9.3 4.1 8.3

Table 1. Time taken by the different inference algorithms on different data sets (in minutes). The times reported for the coarse-to-fine case
do not include supervoxel tree computation time. For the CamVid videos, the speedup is between 3x–5x, while for the SUNY videos the
speedup is between 7x–10x. If we include the time of the on-demand refinement scheme discussed in Section 3.5, the overall speedup
reduces to 2x–4x for CamVid and 5x–6x for the SUNY videos.

same value that would be obtained by running inference on
the flat problem formulation. As shown in Figure 3, this
final accuracy lies between 55% and 75%. However, there
seems to be no clear trend in how this accuracy is achieved
as a function of iterations. For the “bus” video, the accu-
racy quickly spikes up and then reaches a plateau, while for
“ice”, it spikes up after a few iterations. A surrogate for this
accuracy (the percentage accuracy is often unavailable since
there is no ground truth) is the cost function. We can use the
cost function to design an anytime version of the algorithm,
where termination could be guided by sharp spikes (or the
lack thereof) in the cost function.

5. Conclusion
We have presented a general coarse-to-fine scheme for

video segmentation. The key intuition behind the proposed
solution is the fact that the set of likely label assignments
is exponentially smaller than the set of all possible label as-
signments. A flat problem formulation works with the latter
large set, while we use an abstraction scheme (namely su-
pervoxel trees) to identify the former smaller set and work
on the smaller problem. The framework is general since it
can use any optimization algorithm to find the optimal label

Figure 3. Percentage of correctly classified supervoxels after every
iteration of the coarse-to-fine belief propagation algorithm.
for the intermediate problems. It is also exact since it uses
admissible heuristic costs for the coarser supervoxel poten-
tials. Results using ↵-expansion and belief propagation on
two different video datasets showed speedups ranging from
2x–10x. As expected, the speedup obtained is larger for
videos with more spatio-temporal continuity.

As with any general framework, there remains a fair bit
of exploration to do. Other abstraction schemes and op-



Discussion
• An exact, general and efficient coarse-to-fine energy 

minimization strategy for semantic video segmentation 
!

– It produces the same set of solutions as minimizing over the finest 
graph 

!
– It can be used with several energy minimization and hierarchy 

construction algorithms 
!

– It gives a 2x-10x speedup relative to flat algorithm 
!

• Advances in energy minimization or hierarchy construction 
algorithms will only improve the efficiency of our framework
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